-
A novel method to design an ultra-thin perfect metamaterial absorber (PMA) with high quality factor (Q-factor) at microwave frequencies is proposed to improve the absorption performance. The PMA achieves a high Q-factor by appropriately loading the metal cavity based on the substrate integrated waveguide (SIW) technology and the common PMA. An ultrathin absorber with a thickness of 0.0065λ and a full-width at half-maximum of 5.8% is designed. The Q-factor of absorptivity of the absorber is 33.9, which is enhanced by 20% compared with that of the conventional PMA. Meanwhile its Q-factors for radar cross section (RCS) reductions of 1.5 and 3 dBsm respectively increase 54% and 67% higher than those of the conventional PMA. The measured results show that the proposed SIW-PMA eliminates the frequency drift between the infinite periodic array and the finite periodic array, which occurs in the conventional design process. The simulated and measured results show that the proposed PMA has high Q-factor of absorptivity and excellent effect of RCS reduction. Its RCS reduction can reach a maximum value of 14.1 dBsm at the response frequency.
-
Keywords:
- substrate integrated waveguide technology /
- frequency shift /
- absorptivity /
- radar cross section
[1] Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402
[2] Li H, Yuan L H, Zhou B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909
[3] Gu C, Qu S B, Pei Z, Zhou H, Wang J 2010 Progr. Electromagnet. Lett. 17 171
[4] Luo H, Cheng Y Z, Gong R Z 2011 Eur. Phys. J. B 81 387
[5] Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 06370
[6] Li S J, Cao X Y, Gao J, Zheng Q R, Zhao Y, Yang Q 2013 Acta Phys. Sin. 62 194101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群 2013 62 194101]
[7] Cheng Y Z, Nie Y, Gong R Z 2013 Opt. Laser Tech. 48 415
[8] Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X 2012 J. Appl. Phys. 111 044902
[9] Ding F, Cui Y X, Ge X C, Jin Y, He S L 2012 Appl. Phys. Lett. 100 103506
[10] Pham V T, Park J W, Vu D L, Zheng H Y, Rhee J Y, Kim K W, Lee Y P 2013 Adv. Nat. Sci.:Nanosci. Nanotechnol. 4 015001
[11] Liu Y H, Fang S L, Gu S, Zhao X P 2013 Acta Phys. Sin. 62 134102 (in Chinese) [刘亚红, 方石磊, 顾帅, 赵晓鹏 2013 62 134102]
[12] Chen S B, Wen J H, Wang G, Wen X S 2013 Chin. Phys. B 22 074301
[13] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 2327
[14] Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 62 064103]
[15] Li S J, Cao X Y, Gao J, Liu T, Yang H H, Li W Q 2013 Acta Phys. Sin. 62 124101 (in Chinese) [李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强 2013 62 124101]
[16] Qi N N, Gong S X, Zhang P F, Liu J F 2008 Microw. Opt. Tech. Lett. 50 3023
[17] Luo G Q, Hong W, Lai Q H, Sun L L 2008 IET Microw. Antennas Propag. 2 23
[18] Xu R R, Zong Z Y, Yang G, Wu W 2008 Microw. Opt. Tech. Lett. 50 3149
[19] Winkler S A, Hong W, Maurizio B, Wu K 2010 IEEE Trans. Antennas Propag. 58 1202
[20] Luo G Q, Hong W, Tang H J, Chen J X, Yin X X, Wu K 2011 IEEE Trans. Antennas Propag. 55 92
[21] Tarek D, Wu K 2013 J. Univ. Electron. Sci. Tech. China 42 171
[22] Zuo Y, Rashid A K, Shen Z X, Feng Y J 2012 IEEE Antennas and Wireless Propag. 11 297
[23] Dong Y, Itoh T 2011 IEEE Trans. Antennas Propag. 59 767
-
[1] Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402
[2] Li H, Yuan L H, Zhou B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909
[3] Gu C, Qu S B, Pei Z, Zhou H, Wang J 2010 Progr. Electromagnet. Lett. 17 171
[4] Luo H, Cheng Y Z, Gong R Z 2011 Eur. Phys. J. B 81 387
[5] Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 06370
[6] Li S J, Cao X Y, Gao J, Zheng Q R, Zhao Y, Yang Q 2013 Acta Phys. Sin. 62 194101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群 2013 62 194101]
[7] Cheng Y Z, Nie Y, Gong R Z 2013 Opt. Laser Tech. 48 415
[8] Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X 2012 J. Appl. Phys. 111 044902
[9] Ding F, Cui Y X, Ge X C, Jin Y, He S L 2012 Appl. Phys. Lett. 100 103506
[10] Pham V T, Park J W, Vu D L, Zheng H Y, Rhee J Y, Kim K W, Lee Y P 2013 Adv. Nat. Sci.:Nanosci. Nanotechnol. 4 015001
[11] Liu Y H, Fang S L, Gu S, Zhao X P 2013 Acta Phys. Sin. 62 134102 (in Chinese) [刘亚红, 方石磊, 顾帅, 赵晓鹏 2013 62 134102]
[12] Chen S B, Wen J H, Wang G, Wen X S 2013 Chin. Phys. B 22 074301
[13] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 2327
[14] Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 62 064103]
[15] Li S J, Cao X Y, Gao J, Liu T, Yang H H, Li W Q 2013 Acta Phys. Sin. 62 124101 (in Chinese) [李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强 2013 62 124101]
[16] Qi N N, Gong S X, Zhang P F, Liu J F 2008 Microw. Opt. Tech. Lett. 50 3023
[17] Luo G Q, Hong W, Lai Q H, Sun L L 2008 IET Microw. Antennas Propag. 2 23
[18] Xu R R, Zong Z Y, Yang G, Wu W 2008 Microw. Opt. Tech. Lett. 50 3149
[19] Winkler S A, Hong W, Maurizio B, Wu K 2010 IEEE Trans. Antennas Propag. 58 1202
[20] Luo G Q, Hong W, Tang H J, Chen J X, Yin X X, Wu K 2011 IEEE Trans. Antennas Propag. 55 92
[21] Tarek D, Wu K 2013 J. Univ. Electron. Sci. Tech. China 42 171
[22] Zuo Y, Rashid A K, Shen Z X, Feng Y J 2012 IEEE Antennas and Wireless Propag. 11 297
[23] Dong Y, Itoh T 2011 IEEE Trans. Antennas Propag. 59 767
Catalog
Metrics
- Abstract views: 6066
- PDF Downloads: 567
- Cited By: 0