搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抽拉速度对SCN-DC共晶生长形貌的影响

白贝贝 林鑫 王理林 王贤斌 王猛 黄卫东

引用本文:
Citation:

抽拉速度对SCN-DC共晶生长形貌的影响

白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东

Influence of pulling velocity on microstructure and morphologies of SCN-DC eutectic alloy

Bai Bei-Bei, Lin Xin, Wang Li-Lin, Wang Xian-Bin, Wang Meng, Huang Wei-Dong
PDF
导出引用
  • 本文采用类金属透明模型合金丁二腈-23.6 wt%樟脑 (SCN-23.6 wt%DC) 合金, 研究了棒状共晶定向凝固组织的演化行为, 考察了抽拉速度对棒状共晶合金组织形貌演化的影响规律. 结果表明, 在共晶生长初期, 共晶组织首先起源于晶粒晶界或者试样盒型壁处, 随后沿液/固界面和平行于热流方向生长; 在较小的抽拉速度 (0.064–0.44 μm/s)下, 棒状共晶界面前沿呈现平界面形态, 内部两相棒状组织平行生长, 并且随着抽拉速度的增大,棒状共晶逐渐细化, 棒状间距减小; 而在较大的抽拉速度 (0.67–1.56 μm/s)下, 共晶界面前沿呈现胞状生长形貌, 胞内的棒状共晶呈放射状生长, 同样, 随着抽拉速度的增大, 胞内棒状共晶逐渐细化, 棒状间距减小.
    Eutectic solidification is very important in the development of new materials in which the periodic multiphase structures may have a remarkable or enhanced functionality. The morphology evolution during eutectic solidification is investigated experimentally using slab-geometry slides of succinonitrile-(D)camphor (SCN-DC) transparent organic eutectic material. By specifically focusing on the effect of pulling velocity on microstructure in directional growth, the temperature gradient and the thickness are kept the same in all the experiments. It is found that eutectic seeds first occur in the grain boundary channel or the specimen side-wall groove. And the growth of eutectic seeds is both parallel to the direction of temperature gradient and along the liquid/solid interface at the same time. At a low pulling velocity (0.064–0.44 μm/s), the macroscopic growth morphology is flat, and the inner microstructure is rod-shaped, which is parallel to the growth direction. It is obvious that the eutectic spacing becomes smaller with the increase of pulling velocity. At a high pulling velocity (0.67–1.56 μm/s), the macroscopic growth morphology becomes cellular. However, the inner microstructure is still rod-shaped, but its distribution is radially outward. And the eutectic spacing decreases as pulling velocity increases.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB610402)和国家自然科学基金 (批准号: 50971102, 51271213) 资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB610402), and the National Natural Science Foundation of China (Grant Nos. 50971102, 51271213).
    [1]

    Agular M R, Caram R 1996 Journal of Crystal Growth 166 398

    [2]

    Cadirli E, Kaya H, Gunduz M 2007 Journal of Alloys and Compound 431 171

    [3]

    Ginibre M, Akamatsu S, Faivre G 1997 Phys. Rev. 56 780

    [4]

    Datye V, Langer J S 1981 Phys. Rev. 24 4155

    [5]

    Meng Guanghui, Lin X, Du L C, Huang W D 2007 Acta Metall. Sin. 43 459 (in Chinese) [孟广慧, 林鑫, 杜立成, 黄卫东 2007 金属学报 43 459]

    [6]

    Li J F, Zhou Y H 2005 Science in China Ser. E 35 449 (in Chinese) [李金富, 周尧和 2005 中国科学E辑 35 449]

    [7]

    Seetharaman V, Eshelman, Trivedi R 1988 Acta Metall. 36 1175

    [8]

    Jackson K A, Hunt J D 1966 Transaction of the Metallurgical Society of AIME 236 1129

    [9]

    Trivedi R, Magnin P, Kurz W 1987 Acta Metall. 35 971

    [10]

    Kurz W, Trivedi R 1991 Metallurgical Transactions A 22 3051

    [11]

    Li J F, Zhou Y H 2005 Acta Materialia 53 2351

    [12]

    Liu J M, Liu Zh G, W Zh C 1993 Chin. Phys. Lett. 10 253

    [13]

    Yao X D, H T, Zhou Y H, Hu Z Q 1997 Progress in Nature Science 7 24 (in Chinese) [姚向东, 黄韬, 周尧和, 胡壮麒 1997 自然科学进展 7 24]

    [14]

    Akamatsu S, Bottin-Rousseau S, Perrut M, Faivre G, Witusiewicz V T, Sturz L 2007 Journal of Crystal Growth 299 418

    [15]

    ]Serefoglu M, Napolitano R E 2011 Acta Materialia 59 1048

    [16]

    Teng J, Liu S, Trivedi R 2008 Acta Materialia 56 2819

    [17]

    Zhu Y C, Wang J C, Yang G C, Zhao D W 2007 Chin. Phys. 16 805

    [18]

    Wu M W, Xiong S M 2011 Acta Phys. Sin. 60 058103 (in Chinese) [吴孟武, 熊守美 2011 60 058103]

    [19]

    Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Yang G C 2009 Acta Phys. Sin. 58 2797 (in Chinese) [杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓 2009 58 2797]

    [20]

    Zhu Y C, Wang J C, Yang G C, Yang Y J 2007 Acta Phys. Sin. 56 5542 (in Chinese) [朱耀产, 王锦程, 杨根仓, 杨玉娟 2007 56 5542]

    [21]

    Melis Serefoglu, R E Napolitano 2008 Acta Materialia 56 3862

    [22]

    Meng G H 2008 Ph.D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese) [孟广慧 2008 西北工业大学博士论文 (西安: 西北工业大学)]

    [23]

    Zhao S, L J F, Liu L, Zhou Y H 2008 Acta Metall. Sin. 44 1335 (in Chinese) [赵素, 李金富, 刘礼, 周尧和 2008 金属学报 44 1335]

    [24]

    Liu J M 1992 Acta Phys. Sin. 41 861(in Chinese) [刘俊明 1992 41 861]

  • [1]

    Agular M R, Caram R 1996 Journal of Crystal Growth 166 398

    [2]

    Cadirli E, Kaya H, Gunduz M 2007 Journal of Alloys and Compound 431 171

    [3]

    Ginibre M, Akamatsu S, Faivre G 1997 Phys. Rev. 56 780

    [4]

    Datye V, Langer J S 1981 Phys. Rev. 24 4155

    [5]

    Meng Guanghui, Lin X, Du L C, Huang W D 2007 Acta Metall. Sin. 43 459 (in Chinese) [孟广慧, 林鑫, 杜立成, 黄卫东 2007 金属学报 43 459]

    [6]

    Li J F, Zhou Y H 2005 Science in China Ser. E 35 449 (in Chinese) [李金富, 周尧和 2005 中国科学E辑 35 449]

    [7]

    Seetharaman V, Eshelman, Trivedi R 1988 Acta Metall. 36 1175

    [8]

    Jackson K A, Hunt J D 1966 Transaction of the Metallurgical Society of AIME 236 1129

    [9]

    Trivedi R, Magnin P, Kurz W 1987 Acta Metall. 35 971

    [10]

    Kurz W, Trivedi R 1991 Metallurgical Transactions A 22 3051

    [11]

    Li J F, Zhou Y H 2005 Acta Materialia 53 2351

    [12]

    Liu J M, Liu Zh G, W Zh C 1993 Chin. Phys. Lett. 10 253

    [13]

    Yao X D, H T, Zhou Y H, Hu Z Q 1997 Progress in Nature Science 7 24 (in Chinese) [姚向东, 黄韬, 周尧和, 胡壮麒 1997 自然科学进展 7 24]

    [14]

    Akamatsu S, Bottin-Rousseau S, Perrut M, Faivre G, Witusiewicz V T, Sturz L 2007 Journal of Crystal Growth 299 418

    [15]

    ]Serefoglu M, Napolitano R E 2011 Acta Materialia 59 1048

    [16]

    Teng J, Liu S, Trivedi R 2008 Acta Materialia 56 2819

    [17]

    Zhu Y C, Wang J C, Yang G C, Zhao D W 2007 Chin. Phys. 16 805

    [18]

    Wu M W, Xiong S M 2011 Acta Phys. Sin. 60 058103 (in Chinese) [吴孟武, 熊守美 2011 60 058103]

    [19]

    Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Yang G C 2009 Acta Phys. Sin. 58 2797 (in Chinese) [杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓 2009 58 2797]

    [20]

    Zhu Y C, Wang J C, Yang G C, Yang Y J 2007 Acta Phys. Sin. 56 5542 (in Chinese) [朱耀产, 王锦程, 杨根仓, 杨玉娟 2007 56 5542]

    [21]

    Melis Serefoglu, R E Napolitano 2008 Acta Materialia 56 3862

    [22]

    Meng G H 2008 Ph.D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese) [孟广慧 2008 西北工业大学博士论文 (西安: 西北工业大学)]

    [23]

    Zhao S, L J F, Liu L, Zhou Y H 2008 Acta Metall. Sin. 44 1335 (in Chinese) [赵素, 李金富, 刘礼, 周尧和 2008 金属学报 44 1335]

    [24]

    Liu J M 1992 Acta Phys. Sin. 41 861(in Chinese) [刘俊明 1992 41 861]

  • [1] 钮迪, 蒋晗. 界面动力学参数对深胞晶界面形态整体波动不稳定性的影响.  , 2022, 71(16): 168101. doi: 10.7498/aps.71.20220322
    [2] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响.  , 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [3] 徐小花, 陈明文, 王自东. 各向异性表面张力对定向凝固中共晶生长形态稳定性的影响.  , 2018, 67(11): 118103. doi: 10.7498/aps.67.20180186
    [4] 张桐鑫, 王志军, 王理林, 李俊杰, 林鑫, 王锦程. 定向凝固单晶冰的取向确定与选晶.  , 2018, 67(19): 196401. doi: 10.7498/aps.67.20180700
    [5] 贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军. 聚乙烯醇水溶液二维定向凝固的微观组织演化.  , 2017, 66(19): 196402. doi: 10.7498/aps.66.196402
    [6] 蒋晗, 陈明文, 王涛, 王自东. 各向异性界面动力学与各向异性表面张力的相互作用对定向凝固过程中深胞晶生长的影响.  , 2017, 66(10): 106801. doi: 10.7498/aps.66.106801
    [7] 康永生, 赵宇宏, 侯华, 靳玉春, 陈利文. 相场法模拟Fe-C合金定向凝固的液相通道.  , 2016, 65(18): 188102. doi: 10.7498/aps.65.188102
    [8] 蒋晗, 陈明文, 史国栋, 王涛, 王自东. 各向异性表面张力对深胞晶界面形态稳定性的影响.  , 2016, 65(9): 096803. doi: 10.7498/aps.65.096803
    [9] 郭春文, 李俊杰, 马渊, 王锦程. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律.  , 2015, 64(14): 148101. doi: 10.7498/aps.64.148101
    [10] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟.  , 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [11] 陈明文, 陈弈臣, 张文龙, 刘秀敏, 王自东. 各向异性表面张力对定向凝固中深胞晶生长的影响.  , 2014, 63(3): 038101. doi: 10.7498/aps.63.038101
    [12] 王贤斌, 林鑫, 王理林, 宇红雷, 王猛, 黄卫东. 液相对流对定向凝固胞/枝晶间距的影响.  , 2013, 62(7): 078102. doi: 10.7498/aps.62.078102
    [13] 王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东. 晶体取向对定向凝固枝晶生长的影响.  , 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [14] 王理林, 王贤斌, 王红艳, 林鑫, 黄卫东. 晶体取向对定向凝固平界面失稳行为的影响.  , 2012, 61(14): 148104. doi: 10.7498/aps.61.148104
    [15] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究.  , 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [16] 石玉峰, 许庆彦, 柳百成. 对流作用下枝晶形貌演化的数值模拟和实验研究.  , 2011, 60(12): 126101. doi: 10.7498/aps.60.126101
    [17] 王建元, 陈长乐, 翟薇, 金克新. 切向流动作用下SCN-3wt% H2O枝晶定向生长过程研究.  , 2009, 58(9): 6554-6559. doi: 10.7498/aps.58.6554
    [18] 杨玉娟, 王锦程, 杨根仓, 张玉祥, 朱耀产. 三维多相场数值模拟共晶CBr4-C2Cl6合金在不同抽拉速度下的形态选择.  , 2009, 58(4): 2797-2803. doi: 10.7498/aps.58.2797
    [19] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析.  , 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [20] 李梅娥, 杨根仓, 周尧和. 二元合金高速定向凝固过程的相场法数值模拟.  , 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
计量
  • 文章访问数:  5841
  • PDF下载量:  711
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-03
  • 修回日期:  2013-08-06
  • 刊出日期:  2013-11-05

/

返回文章
返回
Baidu
map