搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态参数响应模型的动力锂离子电池循环容量衰减研究

蒋跃辉 艾亮 贾明 程昀 杜双龙 李书国

引用本文:
Citation:

基于动态参数响应模型的动力锂离子电池循环容量衰减研究

蒋跃辉, 艾亮, 贾明, 程昀, 杜双龙, 李书国

Cyclic capacity fading of the power lithium ion battery based on a numerical modelling with dynamic responses

Jiang Yue-Hui, Ai Liang, Jia Ming, Cheng Yun, Du Shuang-Long, Li Shu-Guo
PDF
导出引用
  • 结合锂离子电池容量衰减主要机制,建立了基于动态参数响应的电化学热耦合模型,研究磷酸铁锂电池循环寿命及电池内部的电化学行为.模型采用恒流恒压充放电制度对电池进行循环充放电仿真计算.结果显示:800次循环后,电池容量衰减率约为6.35%,电池内部固体电解质界面膜阻抗增大了15.6 mm-2.分别探讨了充放电倍率、负极活性物质颗粒粒径、负极固相体积分数对电池循环寿命的影响.研究表明:400次循环后,相较于1C(C表示充放电倍率)倍率下的容量衰减率3.31%,2C,3C,4C容量衰减率分别达到3.93%,4.69%和5.04%;负极活性颗粒粒径为2和10 m时对应容量衰减率分别为2.89%,3.87%,差值接近1%;固相体积分数在[0.5,0.6]区间内能保持最好的电池循环稳定性和寿命发挥.
    It is one of the important issues for electric vehicle to utilize power batteries which have long lifetime and excellent performance. For optimizing electrochemical performance and lifetime of the lithium ion battery, an electrochemical-thermal model based on dynamic response is developed by COMSOL MULTIPHYSICS. The modeling theory is the reaction mechanism of lithium iron phosphate battery which also includes a parasitic reaction occurring in the constant current and constant voltage charging process. The model consists of three parts: electro-chemical model, thermal model and capacity fade model. A series of temperature-dependent parameters and lithium ion concentration-dependent parameters relevant to the reaction rate and Li+ transport are employed in this model. Comparing with the results of the experimental test, the model shows high accuracy and reliability. The capacity losses and electrochemical behaviors of the battery in cyclic processes with different rates are investigated. The results show that when the battery is cycled at a rate of 1C, the capacity fading rate is about 6.35%, meanwhile the solid electrolyte interface membrane impedance of the battery is increased by 15.6 mm-2 after 800 time cycle. In the charge process, the side reaction rate within the anode shows a decreasing trend along the direction from the cooper current collector to separator, which is consistent with the lithium concentration in the anode. Besides, the effects of charge/discharge rate, negative active material particle radius and negative solid volume fraction on the battery cycle life are also discussed respectively. Compared with the fading rate of 3.31% after 400 time cycle with 1C rate, the capacity fading rates for 2C, 3C, 4C reach to 3.93%, 4.69% and 5.04% respectively. When the average particle radii of the anode are 2 m and 10 m, corresponding capacity fading rates are 2.89% and 3.87%, showing a difference of nearly 1%. The study for solid volume fraction demonstrates that the battery with a solid volume fraction varying in a range of [0.5, 0.6] will keep a longest battery life. These results show that the model has great potential to optimize the design of the battery.
      通信作者: 贾明, jiamingsunmoon@aliyun.com
    • 基金项目: 国家自然科学基金(批准号:51204211,51222403)、工信部工业转型升级强基工程专项(批准号:0714-EMTC02-5271/6)和湖南省战略性新兴产业与新型工业化专项资金(批准号:2015GK1045)资助的课题.
      Corresponding author: Jia Ming, jiamingsunmoon@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51204211, 51222403), the Special Foundation for Industrial Upgrading Transformation and Strengthen the Foundation of Ministry of Industry and Information Technology, China (Grant No. 0714-EMTC02-5271/6), and the Foundation of Strategic Emerging Industrial Scientific Project Research, China (Grant No. 2015GK1045).
    [1]

    Yan J D 2014 Acta Aeronaut. Astronaut. Sin. 35 2767 (in Chinese) [闫金定 2014 航空学报 35 2767]

    [2]

    Etacheri V, Marom R, Ran E, Salitra G, Aurbach D 2011 Energy Environ. 4 3243

    [3]

    Arora P, White R E, Doyle M 1998 ChemInform 145 3647

    [4]

    Gang N, Haran B, Popov B N 2003 J. Power Sources 117 160

    [5]

    Vetter J, Novk P, Wagner M R, Veit C, Moller K C, Besenhard J O, Winter M, Mehrens W, Vogler C, Hammouche A 2005 J. Power Sources 147 269

    [6]

    Laresgoiti I, Kbitz S, Ecker M, Du S 2015 J. Power Sources 300 112

    [7]

    Arora P, Popov B N, White R E 1998 J. Electrochem. Soc. 145 807

    [8]

    Tang Y W, Jia M, Li J, Lai Y Q, Cheng Y, Liu Y X 2014 J. Electrochem. Soc. 161 E3021

    [9]

    Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 64 210202]

    [10]

    Groot J, Swierczynski M, Stan A I, Kr S K 2015 J. Power Sources 286 475

    [11]

    Ramadass P, Haran B, Gomadam P M, White R, Popov B N 2004 J. Electrochem. Soc. 151 A196

    [12]

    Ploehn H J, Ramadass P, White R E 2004 J. Electrochem. Soc. 151 A456

    [13]

    Safari M, Morcrette M, Teyssot A, Delacourt C 2009 J. Electrochem. Soc. 156 A145

    [14]

    Honkura K, Takahashi K, Horiba T 2011 J. Power Sources 196 10141

    [15]

    Ecker M, Gerschler J B, Vogel J, Kbitz S, Hust F, Dechent P, Sauer D U 2012 J. Power Sources 215 248

    [16]

    Watanabe S, Kinoshita M, Nakura K 2014 J. Power Sources 247 412

    [17]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212

    [18]

    Ye Y, Shi Y, Tay A A O 2012 J. Power Sources 217 509

    [19]

    Baek K W, Hong E S, Cha S W 2015 Int. J. Automot. Tech. 16 309

    [20]

    Newman J, Tiedemann W 1975 Aiche. J. 21 25

    [21]

    Doyle M, Fuller T F, Newman J S 1993 J. Electrochem. Soc. 140 1526

    [22]

    Doyle M, Newman J, Reimers J 1994 J. Power Sources 52 211

    [23]

    Doyle M, Newman J 1995 Electrochimica Acta 40 2191

    [24]

    Li J, Cheng Y, Jia M, Tang Y W, Lin Y, Zhang Z A, Liu Y X 2014 J. Power Sources 255 130

    [25]

    Verbrugge M W, Koch B J 2003 J. Electrochem. Soc. 150 A374

    [26]

    Yamada A, Koizumi H, Nishimura S, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y 2006 Nature Mater. 5 357

    [27]

    Srinivasan V, Wang C Y 2003 J. Electrochem. Soc. 150 A98

    [28]

    Gerver R E, Meyers J P 2011 Quatern Int. 158 A835

    [29]

    Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M 1996 J. Electrochem. Soc. 143 1890

  • [1]

    Yan J D 2014 Acta Aeronaut. Astronaut. Sin. 35 2767 (in Chinese) [闫金定 2014 航空学报 35 2767]

    [2]

    Etacheri V, Marom R, Ran E, Salitra G, Aurbach D 2011 Energy Environ. 4 3243

    [3]

    Arora P, White R E, Doyle M 1998 ChemInform 145 3647

    [4]

    Gang N, Haran B, Popov B N 2003 J. Power Sources 117 160

    [5]

    Vetter J, Novk P, Wagner M R, Veit C, Moller K C, Besenhard J O, Winter M, Mehrens W, Vogler C, Hammouche A 2005 J. Power Sources 147 269

    [6]

    Laresgoiti I, Kbitz S, Ecker M, Du S 2015 J. Power Sources 300 112

    [7]

    Arora P, Popov B N, White R E 1998 J. Electrochem. Soc. 145 807

    [8]

    Tang Y W, Jia M, Li J, Lai Y Q, Cheng Y, Liu Y X 2014 J. Electrochem. Soc. 161 E3021

    [9]

    Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 64 210202]

    [10]

    Groot J, Swierczynski M, Stan A I, Kr S K 2015 J. Power Sources 286 475

    [11]

    Ramadass P, Haran B, Gomadam P M, White R, Popov B N 2004 J. Electrochem. Soc. 151 A196

    [12]

    Ploehn H J, Ramadass P, White R E 2004 J. Electrochem. Soc. 151 A456

    [13]

    Safari M, Morcrette M, Teyssot A, Delacourt C 2009 J. Electrochem. Soc. 156 A145

    [14]

    Honkura K, Takahashi K, Horiba T 2011 J. Power Sources 196 10141

    [15]

    Ecker M, Gerschler J B, Vogel J, Kbitz S, Hust F, Dechent P, Sauer D U 2012 J. Power Sources 215 248

    [16]

    Watanabe S, Kinoshita M, Nakura K 2014 J. Power Sources 247 412

    [17]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212

    [18]

    Ye Y, Shi Y, Tay A A O 2012 J. Power Sources 217 509

    [19]

    Baek K W, Hong E S, Cha S W 2015 Int. J. Automot. Tech. 16 309

    [20]

    Newman J, Tiedemann W 1975 Aiche. J. 21 25

    [21]

    Doyle M, Fuller T F, Newman J S 1993 J. Electrochem. Soc. 140 1526

    [22]

    Doyle M, Newman J, Reimers J 1994 J. Power Sources 52 211

    [23]

    Doyle M, Newman J 1995 Electrochimica Acta 40 2191

    [24]

    Li J, Cheng Y, Jia M, Tang Y W, Lin Y, Zhang Z A, Liu Y X 2014 J. Power Sources 255 130

    [25]

    Verbrugge M W, Koch B J 2003 J. Electrochem. Soc. 150 A374

    [26]

    Yamada A, Koizumi H, Nishimura S, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y 2006 Nature Mater. 5 357

    [27]

    Srinivasan V, Wang C Y 2003 J. Electrochem. Soc. 150 A98

    [28]

    Gerver R E, Meyers J P 2011 Quatern Int. 158 A835

    [29]

    Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M 1996 J. Electrochem. Soc. 143 1890

  • [1] 赵宁宁, 肖新宇, 凡凤仙, 苏明旭. 基于蒙特卡罗原理的混合颗粒三相体系声衰减计算模型研究.  , 2022, 71(7): 074303. doi: 10.7498/aps.71.20211869
    [2] 张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜. 不同充放电模式影响还原氧化石墨烯电极储锂性能的实验分析.  , 2022, 71(6): 066501. doi: 10.7498/aps.71.20211405
    [3] 杜清馨, 孙其诚, 丁红胜, 张国华, 范彦丽, 安飞飞. 垂直振动下干湿颗粒样品的体积模量与耗散.  , 2022, 71(18): 184501. doi: 10.7498/aps.71.20220329
    [4] 王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏. 基于CRDS和WM-DAS的宽量程免标定H2S体积分数的测量.  , 2022, 71(18): 184205. doi: 10.7498/aps.71.20220742
    [5] 王玉龙, 张晓虹, 李丽丽, 高俊国, 郭宁, 程成. 基于超声波声压衰减效应的局部放电源定位与强度标定.  , 2021, 70(9): 095209. doi: 10.7498/aps.70.20201727
    [6] 王飞, 黄益旺, 孙启航. 气泡体积分数对沙质沉积物低频声学特性的影响.  , 2017, 66(19): 194302. doi: 10.7498/aps.66.194302
    [7] 汤依伟, 艾亮, 程昀, 王安安, 李书国, 贾明. 锂离子动力电池高倍率充放电过程中弛豫行为的仿真.  , 2016, 65(5): 058201. doi: 10.7498/aps.65.058201
    [8] 张威, 胡林, 张兴刚. 双分散颗粒体系在临界堵塞态的结构特征.  , 2016, 65(2): 024502. doi: 10.7498/aps.65.024502
    [9] 杨伟国, 钟诚, 夏辉. 浓悬浮液中渗透性颗粒的扩散特性研究.  , 2014, 63(21): 214705. doi: 10.7498/aps.63.214705
    [10] 王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤. 依据光谱研究闪电放电通道的半径及能量传输特性.  , 2013, 62(10): 109201. doi: 10.7498/aps.62.109201
    [11] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究.  , 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [12] 王雷, 王楠, 冀林, 姚文静. 高生长速度条件下的层片棒状共晶转变机理研究.  , 2013, 62(21): 216801. doi: 10.7498/aps.62.216801
    [13] 钱祖文. 颗粒介质中的粘滞系数.  , 2012, 61(13): 134301. doi: 10.7498/aps.61.134301
    [14] 王平建, 夏继宏, 刘长松, 刘会, 闫龙. 一维复合颗粒链中能量衰减的动力学分析.  , 2011, 60(1): 014501. doi: 10.7498/aps.60.014501
    [15] 孔维姝, 胡林, 张兴刚, 岳国联. 颗粒堆的体积分数与制备流量关系的实验研究.  , 2010, 59(1): 411-416. doi: 10.7498/aps.59.411
    [16] 杨娟, 赖晓明, 彭刚, 卞保民, 陆建. 悬浮颗粒计数信号等效体积的分形测度.  , 2009, 58(5): 3008-3013. doi: 10.7498/aps.58.3008
    [17] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布.  , 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [18] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响.  , 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [19] 钱祖文. 颗粒介质中声衰减的浓悬浮粒子理论及其应用.  , 1988, 37(1): 64-70. doi: 10.7498/aps.37.64
    [20] 费庆宇, 黄炳忠. 射频溅射无定形硅的总空位体积分数.  , 1985, 34(11): 1413-1421. doi: 10.7498/aps.34.1413
计量
  • 文章访问数:  7383
  • PDF下载量:  770
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-10
  • 修回日期:  2017-03-10
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map