-
Decoy state has proven to be a very useful method of significantly enhancing the performance of a quantum key distribution (QKD) system with practical light sources. The data-set size in practical QKD protocol is always finite, which will cause statistical fluctuations. The gain and the error rate of the quantum state are analyzed by considering absolutely statistical fluctuation. The relation between key generation rate and the secure communication distance is shown with exchanged quantum signal (N = 106 -1012) by the method of two-decoy-state protocol under the condition that communication wavelength is 1310 nm (or1550 nm). The result indicates that the minimal number of exchanged quantum signals increases obviously with the increase of transmission distance. The secure transmission distance is 135 km under the condition that quantum signal is 1012.
-
Keywords:
- decoy state /
- quantum key distribution /
- statistical fluctuation
[1] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[2] Bennet C H, Brassard G 1984 Proc. IEEE International Conference Computers, Systems, and Signal Processing Bangalore, New York, IEEE
[3] Mao E L, Mo X F, Gui Y Z, Han Z F, Guo G C 2004 Acta Phys. Sin 53 2126 (in Chinese) [苗二龙, 莫小范, 桂有珍, 韩正甫, 郭光灿 2004 53 2126]
[4] Ma H Q, Li Y L, Zhao H, Wu L A 2005 Acta Phys. Sin. 54 5014 (in Chinese) [马海强, 李亚玲, 赵环, 吴令安 2005 54 5014]
[5] Jiao R Z, Zhang W H 2009 Acta Phys. Sin. 58 2189 (in Chinese) [焦荣珍, 张文翰 2009 58 2189]
[6] Wang J D, Qin X J,Wei Z J, Liu X B, Liao C J, Liu S H 2010 Acta Phys. Sin. 59 281 (in Chinese) [王金东, 秦晓娟, 魏正军, 刘小宝, 廖常俊, 刘颂豪 2010 59 281]
[7] Wang J D, Wei Z J, Zhang H, Zhang H N, Chen S, Qin X J, Guo J P, Liao C J, Liu S H 2010 Acta Phys. Sin. 59 5514 (in Chinese) [ 王金东, 魏正军, 张辉, 张华妮, 陈帅, 秦晓娟, 郭健平, 廖常俊, 刘颂豪 2010 59 5514]
[8] Hwang W Y, 2003 Phys. Rev. Lett. 91 057901
[9] Wang X B 2005 Phys. Rev. Lett. 94 230503
[10] Ma X F, Qi B, Zhao Y, Lo H K, 2005 Phys. Rev. A 72 012326
[11] Meyer T, Kampermann H, Kleinmamm M, Brub D 2007 Phys. Rev. A 74 042340
[12] Hayashi M 2007 Phys. Rev. A 76 012329
[13] Curty M, Ma X F, Qi B, Moroder T 2010 Phys. Rev. A 81 022310
-
[1] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[2] Bennet C H, Brassard G 1984 Proc. IEEE International Conference Computers, Systems, and Signal Processing Bangalore, New York, IEEE
[3] Mao E L, Mo X F, Gui Y Z, Han Z F, Guo G C 2004 Acta Phys. Sin 53 2126 (in Chinese) [苗二龙, 莫小范, 桂有珍, 韩正甫, 郭光灿 2004 53 2126]
[4] Ma H Q, Li Y L, Zhao H, Wu L A 2005 Acta Phys. Sin. 54 5014 (in Chinese) [马海强, 李亚玲, 赵环, 吴令安 2005 54 5014]
[5] Jiao R Z, Zhang W H 2009 Acta Phys. Sin. 58 2189 (in Chinese) [焦荣珍, 张文翰 2009 58 2189]
[6] Wang J D, Qin X J,Wei Z J, Liu X B, Liao C J, Liu S H 2010 Acta Phys. Sin. 59 281 (in Chinese) [王金东, 秦晓娟, 魏正军, 刘小宝, 廖常俊, 刘颂豪 2010 59 281]
[7] Wang J D, Wei Z J, Zhang H, Zhang H N, Chen S, Qin X J, Guo J P, Liao C J, Liu S H 2010 Acta Phys. Sin. 59 5514 (in Chinese) [ 王金东, 魏正军, 张辉, 张华妮, 陈帅, 秦晓娟, 郭健平, 廖常俊, 刘颂豪 2010 59 5514]
[8] Hwang W Y, 2003 Phys. Rev. Lett. 91 057901
[9] Wang X B 2005 Phys. Rev. Lett. 94 230503
[10] Ma X F, Qi B, Zhao Y, Lo H K, 2005 Phys. Rev. A 72 012326
[11] Meyer T, Kampermann H, Kleinmamm M, Brub D 2007 Phys. Rev. A 74 042340
[12] Hayashi M 2007 Phys. Rev. A 76 012329
[13] Curty M, Ma X F, Qi B, Moroder T 2010 Phys. Rev. A 81 022310
Catalog
Metrics
- Abstract views: 7570
- PDF Downloads: 473
- Cited By: 0