-
Nitrogen ions implanted into the buried oxide layer can increase the total dose radiation hardness of silicon on insulator (SOI) materials. However, the obvious increase in positive charge density in the buried layer with high dose of nitrogen implantation leads to a negative effect on the technology of nitrogen implantation into buried oxide. In order to suppress the increase in positive charge density in the nitrogen-implanted buried layer, co-implantation of nitrogen and fluorine is used to implant fluorine into the nitrogen-implanted buried layer. High-frequency voltage-capacitance (C-V) technique is used to characterize the positive charge density in the buried layer. Results show that, in most cases, using the co-implantation of nitrogen and fluorine can significantly reduce the positive charge density in the nitrogen-implanted buried layer. At the same time, it is also found that further increase of the positive charge density induced by fluorine implantation in the nitrogen-implanted buried layer can occur in particular cases. It is proposed that the decrease in the positive charge density in the fluorine and nitrogen-implanted buried layer is due to the introduction of electron traps into the buried layer through fluorine implantation.
-
Keywords:
- silicon on insulator (SOI) /
- nitrogen implantation /
- fluorine implantation /
- positive charge density in buried oxide layer
[1] Mikawa R E, Ackerman M R 1987 IEEE Trans. Nucl. Sci. 34 1698
[2] Musseau O, Leray J L, Ferlet-Cavrois V 1994 IEEE Trans. Nucl. Sci. 41 607
[3] Schwank J R, Shaneyfelt M R, Dodd P E, Ferlet-Cavrois V, Loemker R A, Winokur P S, Fleetwood D M, Paillet P, Leray J L, Draper B L, Witczak S C, Riewe L C 2000 IEEE Trans. Nucl. Sci. 47 2175
[4] Mayer D C 1990 IEEE Trans. Electron. Dev. 37 1280
[5] Yang H, Zhang E X, Zhang Z X 2007 Chin. J. Semi 28 323
[6] Wu A M, Chen J, Zhang E X, Wang X, Zhang Z X 2008 Semicond. Sci. Technol. 23 015015
[7] Zhang S, Zhang Z X, Bi D W, Chen M, Tian H, Yu W J, Wang R, Liu Z L 2009 J. Semicond. 30 093002
[8] Bi D W, Zhang Z X, Zhang S, Chen M, Yu W J, Wang R, Tian H, Liu Z L 2009 Chin. Phys. C 33 866
[9] Zhang E X, Sun J Y, Chen J, Zhang Z X, Wang X 2005 J. Elec. Mat. 34 L53
[10] Zheng Z S, Liu Z L, Yu F, Li N 2012 Chin. Phys. B 21 106106
[11] Tang H M, Zheng Z S, Zhang E X, Yu F 2011 Acta Phys. Sin. 60 056104 (in Chinese) [唐海马, 郑中山, 张恩霞, 于芳 2011 60 056104]
[12] Satinder K S, Prasad B, Kumar D, Kumar R 2009 Vacuum 83 1359
[13] Lelis A J, Oldham T R, Boesch H E, Jr McLean F B 1989 IEEE Trans. Nucl. Sci. 36 1808
[14] Pantelides S T, Lu Z Y, Nicklaw C, Bakos T, Rashkeev S N, Fleetwood D M, Schrimpf R D 2008 Journal of Non-Crystalline Solids 354 217
-
[1] Mikawa R E, Ackerman M R 1987 IEEE Trans. Nucl. Sci. 34 1698
[2] Musseau O, Leray J L, Ferlet-Cavrois V 1994 IEEE Trans. Nucl. Sci. 41 607
[3] Schwank J R, Shaneyfelt M R, Dodd P E, Ferlet-Cavrois V, Loemker R A, Winokur P S, Fleetwood D M, Paillet P, Leray J L, Draper B L, Witczak S C, Riewe L C 2000 IEEE Trans. Nucl. Sci. 47 2175
[4] Mayer D C 1990 IEEE Trans. Electron. Dev. 37 1280
[5] Yang H, Zhang E X, Zhang Z X 2007 Chin. J. Semi 28 323
[6] Wu A M, Chen J, Zhang E X, Wang X, Zhang Z X 2008 Semicond. Sci. Technol. 23 015015
[7] Zhang S, Zhang Z X, Bi D W, Chen M, Tian H, Yu W J, Wang R, Liu Z L 2009 J. Semicond. 30 093002
[8] Bi D W, Zhang Z X, Zhang S, Chen M, Yu W J, Wang R, Tian H, Liu Z L 2009 Chin. Phys. C 33 866
[9] Zhang E X, Sun J Y, Chen J, Zhang Z X, Wang X 2005 J. Elec. Mat. 34 L53
[10] Zheng Z S, Liu Z L, Yu F, Li N 2012 Chin. Phys. B 21 106106
[11] Tang H M, Zheng Z S, Zhang E X, Yu F 2011 Acta Phys. Sin. 60 056104 (in Chinese) [唐海马, 郑中山, 张恩霞, 于芳 2011 60 056104]
[12] Satinder K S, Prasad B, Kumar D, Kumar R 2009 Vacuum 83 1359
[13] Lelis A J, Oldham T R, Boesch H E, Jr McLean F B 1989 IEEE Trans. Nucl. Sci. 36 1808
[14] Pantelides S T, Lu Z Y, Nicklaw C, Bakos T, Rashkeev S N, Fleetwood D M, Schrimpf R D 2008 Journal of Non-Crystalline Solids 354 217
Catalog
Metrics
- Abstract views: 6473
- PDF Downloads: 613
- Cited By: 0