搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下线谱噪声源识别的波束域时频分析方法研究

徐灵基 杨益新 杨龙

引用本文:
Citation:

水下线谱噪声源识别的波束域时频分析方法研究

徐灵基, 杨益新, 杨龙

Beamspace time-frequency analysis for identification of underwater tone noise sources

Xu Ling-Ji, Yang Yi-Xin, Yang Long
PDF
导出引用
  • 从联合空时频三维信息从发, 提出了波束域时频分析识别水下运动航行器低频线谱噪声源位置的方法. 首先, 利用小孔径圆环阵的超指向性波束形成, 将各线谱噪声源匀速通过正横位置附近时产生的多普勒信号在时域上分离. 其次, 分别使用伪Wigner-Ville分布和调频小波变换两种时频分析方法对波束输出的信号进行处理, 得到各噪声源信号的时频图像. 最后, 转换时间坐标到空间并参考配置信标, 即可识别低频线谱噪声源在水下航行器上的位置. 该方法解决了阵列识别水下低频噪声源的孔径受限问题, 同时对处理同频相干噪声源也适用. 仿真试验结果表明: 两种波束域时频分析方法都能较精确地识别低频线谱噪声源的位置; 在测量系统信息的配合下, 波束域调频小波变换的识别效果更优.
    The noise emitted by an underwater vehicle consists of several strong tones superimposed on a broad-band radiated noise component. Among them, the stable low-frequency tone noise induced by the reciprocating movements of the auxiliary machines in the underwater vehicle, carries characteristic information of the vehicle and is necessary for long-distance detection. Therefore, identification of the tone noise sources of an underwater vehicle is significant for noise reduction. On the basis of the joint information of space-time-frequency, beamspace time-frequency analysis (TFA) scheme is proposed for identification of low-frequency tone noise sources of underwater moving vehicle. First, the Doppler signals formed when the tone noise sources pass through the closest point of approach (CPA) are separated in time domain, by using superdirectivity beamforming of a small aperture circular array. The output signals can be approximated in linear form, i. e., LFM signal. After the LFM signals from the narrow beam are processed by two TFA methods of pseudo Wigner - Ville distribution and chirplet transform (CT), the time-frequency images of the noise signals are obtained. Then, the CPA time of each tone noise sources can be estimated by using peak search of the time-frequency images. At last, by converting the time coordinate to space coordinate and comparing with a reference source whose CPA time and position are known in advance, the positions of the low-frequency tone noise sources on the underwater vehicle are identified. The proposed scheme is different from the focused beamforming method, which scans the beam angle after eliminating the Doppler effect. Besides, due to no need of decorrelation usually used in the focused beamforming method, beamspace TFA scheme resolves the problem that array aperture is limited for identification of coherent noise sources of an underwater vehicle. The aperture of the used array can be reduced to meter-scale even when the frequencies of the tone noise are low. Although the array gain of superdirectivity beamforming decreases in nonisotropic noise field, the main lobe of the beam still keeps the same shape. Therefore, the performance of the proposed scheme is robust. Simulation analysis shows the following results: (1) Both the two beamspace TFA methods can precisely identify the underwater tone noise sources through a small aperture circular array, the radius of which is equal to 1.6 m, and the localization errors are less than 1 m when the signal-to-noise ratios are moderate; (2) The higher the frequencies of the tone noises are, the better the localization accuracy of beamspace TFA methods obtain; (3) The proposed scheme is less sensitive to the velocity of the underwater moving vehicle, and the localization results just have very small difference under various velocities; (4) The localization accuracy is related to distance, and decade meters is a reasonable choose for actual noise measurement; (5) Beamspace CT has better resolving accuracy when the information of measurement system is given, so the choice of the two beamspace TFA methods can be decided according to the actual measurement condition.
      通信作者: 杨益新, yxyang@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11274253)资助的课题.
      Corresponding author: Yang Yi-Xin, yxyang@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274253).
    [1]

    He Z Y 1996 Progress in Physics 16 600 (in Chinese) [何祚镛 1996 物理学进展 16 100]

    [2]

    Yang D G, Wang Z T, Li B, Luo Y G, Lian X M 2011 J. Sound Vib. 330 1352

    [3]

    Yang D G, Luo Y G, Li B, Li K Q, Lian X M 2010 Acta Phys. Sin. 59 4738 (in Chinese) [杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉 2010 59 4738]

    [4]

    Park S H, Kim Y H 2001 J. Acoust. Soc. Am. 110 2326

    [5]

    Chen M Y, Shang D J, Li Q, Liu Y W 2011 Acta Acoust. 36 489 (in Chinese) [陈梦英, 商德江, 李琪, 刘永伟 2011 声学学报 36 489]

    [6]

    Yang D S, Guo X X, Shi S G, Hu B 2012 J. Vib. Shock 31 13 (in Chinese) [杨德森, 郭小霞, 时胜国, 胡博 2012 振动与冲击 31 13]

    [7]

    Hui J, Hu D, Hui J Y, Yin J W 2007 Acta Acoust. 32 356 (in Chinese) [惠娟, 胡丹, 惠俊英, 殷敬伟 2007 声学学报 32 356]

    [8]

    Zhai C P, Zhang M W, Liu Y D, Zhang Y 2013 Acta Acoust. 38 281 (in Chinese) [翟春平, 张明伟, 刘雨东, 张宇 2013 声学学报 38 281]

    [9]

    Cigada A, Ripamonti F, Vanali M 2007 Mech. Syst. Signal Process. 21 3645

    [10]

    Yan G H, Chen Z F, Sun J C 2009 Journal of Northwestern Polytechnical University 27 378 (in Chinese) [严光洪, 陈志菲, 孙进才2009 西北工业大学学报 27 378]

    [11]

    Liu Y C, He Y A, Shang De J, Shang D J, Sun C. 2013 Acta Acoust. 38 533 (in Chinese) [刘月蝉, 何元安, 商德江, 尚大晶, 孙超 2013 声学学报 38 533]

    [12]

    Shi J, Yang D S, Shi S G 2011 Acta Phys. Sin. 60 064301 (in Chinese) [时洁, 杨德森, 时胜国 2011 60 064301]

    [13]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302. (in Chinese) [时洁, 杨德森, 时胜国 2012 61 124302]

    [14]

    Wang Z W, Xu L J, Yang Y X, Wang X B 2012 J. Vib. Shock 31 118 (in Chinese) [王志伟, 徐灵基, 杨益新, 王秀波 2012振动与冲击 31 118]

    [15]

    Brooks T F, Humphreys William M 2006 J. Sound Vib. 294 856

    [16]

    Fleury V, Bulte J 2011 J. Acoust. Soc. Am. 129 1417

    [17]

    Fleury V, Bulte J 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, MA, May 8-10, p2654

    [18]

    Yardibi T, Li J 2010 J. Acoust. Soc. Am. 127 2920

    [19]

    Xu L J, Yang Y X 2014 J. Electron. Inform. Tech. 36 1119 (in Chinese) [徐灵基, 杨益新 2014 电子与信息学报 36 1119]

    [20]

    Tian F, Yang Y X, Wu Y Z, Yang L 2014 J. Electron. Inform. Tech. 36 2889 (in Chinese) [田丰, 杨益新, 吴姚振, 杨龙 2014 电子与信息学报 36 2889]

    [21]

    Sun C 2007 Underwater Sensor Array Signal Processing (Xi'an: Northwestern Polytechnical University Press) pp80-82 (in Chinese) [孙超 2007 水下多传感器阵列信号处理 (西安: 西北工业大学出版社) 第80–82页]

    [22]

    Ma Y L, Yang Y X, He Z Y, Yang K D, Sun C, Wang Y M 2013 IEEE Trans. Ind. Electron. 60 203

    [23]

    Xu L J, Yang Y X, Yang L 2014 Acta Electron. Sinica 42 2247 (in Chinese) [徐灵基, 杨益新, 杨龙 2014 电子学报 42 2247]

    [24]

    Boashash B 2003 Time Frequency Signal Analysis and Processing: A Comprehensive Reference (London: Elsevier) pp48-53

    [25]

    Yang Y, Peng Z K, Dong X J, Zhang W M, Meng G 2014 IEEE Trans. Signal Process. 62 2751

  • [1]

    He Z Y 1996 Progress in Physics 16 600 (in Chinese) [何祚镛 1996 物理学进展 16 100]

    [2]

    Yang D G, Wang Z T, Li B, Luo Y G, Lian X M 2011 J. Sound Vib. 330 1352

    [3]

    Yang D G, Luo Y G, Li B, Li K Q, Lian X M 2010 Acta Phys. Sin. 59 4738 (in Chinese) [杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉 2010 59 4738]

    [4]

    Park S H, Kim Y H 2001 J. Acoust. Soc. Am. 110 2326

    [5]

    Chen M Y, Shang D J, Li Q, Liu Y W 2011 Acta Acoust. 36 489 (in Chinese) [陈梦英, 商德江, 李琪, 刘永伟 2011 声学学报 36 489]

    [6]

    Yang D S, Guo X X, Shi S G, Hu B 2012 J. Vib. Shock 31 13 (in Chinese) [杨德森, 郭小霞, 时胜国, 胡博 2012 振动与冲击 31 13]

    [7]

    Hui J, Hu D, Hui J Y, Yin J W 2007 Acta Acoust. 32 356 (in Chinese) [惠娟, 胡丹, 惠俊英, 殷敬伟 2007 声学学报 32 356]

    [8]

    Zhai C P, Zhang M W, Liu Y D, Zhang Y 2013 Acta Acoust. 38 281 (in Chinese) [翟春平, 张明伟, 刘雨东, 张宇 2013 声学学报 38 281]

    [9]

    Cigada A, Ripamonti F, Vanali M 2007 Mech. Syst. Signal Process. 21 3645

    [10]

    Yan G H, Chen Z F, Sun J C 2009 Journal of Northwestern Polytechnical University 27 378 (in Chinese) [严光洪, 陈志菲, 孙进才2009 西北工业大学学报 27 378]

    [11]

    Liu Y C, He Y A, Shang De J, Shang D J, Sun C. 2013 Acta Acoust. 38 533 (in Chinese) [刘月蝉, 何元安, 商德江, 尚大晶, 孙超 2013 声学学报 38 533]

    [12]

    Shi J, Yang D S, Shi S G 2011 Acta Phys. Sin. 60 064301 (in Chinese) [时洁, 杨德森, 时胜国 2011 60 064301]

    [13]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302. (in Chinese) [时洁, 杨德森, 时胜国 2012 61 124302]

    [14]

    Wang Z W, Xu L J, Yang Y X, Wang X B 2012 J. Vib. Shock 31 118 (in Chinese) [王志伟, 徐灵基, 杨益新, 王秀波 2012振动与冲击 31 118]

    [15]

    Brooks T F, Humphreys William M 2006 J. Sound Vib. 294 856

    [16]

    Fleury V, Bulte J 2011 J. Acoust. Soc. Am. 129 1417

    [17]

    Fleury V, Bulte J 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, MA, May 8-10, p2654

    [18]

    Yardibi T, Li J 2010 J. Acoust. Soc. Am. 127 2920

    [19]

    Xu L J, Yang Y X 2014 J. Electron. Inform. Tech. 36 1119 (in Chinese) [徐灵基, 杨益新 2014 电子与信息学报 36 1119]

    [20]

    Tian F, Yang Y X, Wu Y Z, Yang L 2014 J. Electron. Inform. Tech. 36 2889 (in Chinese) [田丰, 杨益新, 吴姚振, 杨龙 2014 电子与信息学报 36 2889]

    [21]

    Sun C 2007 Underwater Sensor Array Signal Processing (Xi'an: Northwestern Polytechnical University Press) pp80-82 (in Chinese) [孙超 2007 水下多传感器阵列信号处理 (西安: 西北工业大学出版社) 第80–82页]

    [22]

    Ma Y L, Yang Y X, He Z Y, Yang K D, Sun C, Wang Y M 2013 IEEE Trans. Ind. Electron. 60 203

    [23]

    Xu L J, Yang Y X, Yang L 2014 Acta Electron. Sinica 42 2247 (in Chinese) [徐灵基, 杨益新, 杨龙 2014 电子学报 42 2247]

    [24]

    Boashash B 2003 Time Frequency Signal Analysis and Processing: A Comprehensive Reference (London: Elsevier) pp48-53

    [25]

    Yang Y, Peng Z K, Dong X J, Zhang W M, Meng G 2014 IEEE Trans. Signal Process. 62 2751

  • [1] 印必还, 何姿, 丁大志. 基于旋转多普勒效应的自旋目标转速估计方法.  , 2023, 72(17): 174203. doi: 10.7498/aps.72.20230807
    [2] 罗勇, 杨党国, 武从海, 李虎, 张树海, 吴军强. 三维空腔流动波系建模及模态演化.  , 2022, 71(19): 194301. doi: 10.7498/aps.71.20220922
    [3] 罗小军, 石立华, 张琪, 邱实, 李云, 刘毅诚, 段艳涛. 一次人工触发闪电回击过程的光辐射色散特性分析.  , 2022, 71(17): 179201. doi: 10.7498/aps.71.20220479
    [4] 高德洋, 高大治, 迟静, 王良, 宋文华. Doppler-warping变换及其应用在声学目标运动速度估计.  , 2021, 70(12): 124302. doi: 10.7498/aps.70.20201653
    [5] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控.  , 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [6] 崔岸婧, 李道京, 周凯, 王宇, 洪峻. 阵列结构下的低频信号合成方法研究.  , 2020, 69(19): 194101. doi: 10.7498/aps.69.20200501
    [7] 王传位, 李宁, 黄孝龙, 翁春生. 基于多角度投影激光吸收光谱技术的两段式速度分布流场测试方法.  , 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [8] 郭力仁, 胡以华, 董骁, 李敏乐. 运动目标激光微多普勒效应平动补偿和微动参数估计.  , 2018, 67(15): 150701. doi: 10.7498/aps.67.20172754
    [9] 刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏. 负质量密度声学超材料的反常多普勒效应.  , 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [10] 郭俊媛, 杨士莪, 朴胜春, 莫亚枭. 基于超指向性多极子矢量阵的水下低频声源方位估计方法研究.  , 2016, 65(13): 134303. doi: 10.7498/aps.65.134303
    [11] 杨阳, 李秀坤. 水下目标声散射信号的时频域盲抽取.  , 2016, 65(16): 164301. doi: 10.7498/aps.65.164301
    [12] 刘亚奇, 刘成城, 赵拥军, 朱健东. 基于时频分析的多目标盲波束形成算法.  , 2015, 64(11): 114302. doi: 10.7498/aps.64.114302
    [13] 周杰, 江浩, 菊池久和, 邵根富. 基于改进的统计信道模型与多天线系统性能分析.  , 2014, 63(14): 140506. doi: 10.7498/aps.63.140506
    [14] 江浩, 周杰, 菊池久和, 邵根富. 基于三维空间域移动通信统计信道的多普勒效应.  , 2014, 63(4): 048702. doi: 10.7498/aps.63.048702
    [15] 李焜, 方世良, 安良. 基于频散特征的单水听器模式特征提取及距离深度估计研究.  , 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [16] 李彦超, 王春晖, 高龙, 丛海芳, 曲杨. 多普勒振镜正弦调制多光束激光外差测量玻璃厚度的方法.  , 2012, 61(4): 044207. doi: 10.7498/aps.61.044207
    [17] 吕君, 赵正予, 周晨, 张援农. 有限振幅声波间的非线性相互作用对声源远场指向性的影响.  , 2011, 60(8): 084301. doi: 10.7498/aps.60.084301
    [18] 杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉. 基于时域多普勒修正的运动声全息识别方法.  , 2010, 59(7): 4738-4747. doi: 10.7498/aps.59.4738
    [19] 张 宏, 方路平, 童勤业. 海豚等动物神经系统处理多普勒信号的一种可能性方案.  , 2007, 56(12): 7339-7345. doi: 10.7498/aps.56.7339
    [20] 左战春, 孙 江, 吴令安, 傅盘铭. 消多普勒三光子共振六波混频.  , 2006, 55(3): 1186-1190. doi: 10.7498/aps.55.1186
计量
  • 文章访问数:  6045
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-16
  • 修回日期:  2015-04-23
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map