-
Four-bilayer Ge quantum dots (QDs) with Si spacers were epitaxially grown on Si(001) substrates by means of ultrahigh vacuum chemical vapor deposition. In two samples, Ge QDs were in situ doped with phosphorus or boron, separately. Surface morphology and room temperature photoluminescence (PL) of multilayer Ge/Si QDs wer studied. Compared with the undoped Ge QDs, phosphorus-doping did not change the morphology of Ge QDs, enhanced PL wer observed from the phosphorus-doped Ge QDs. But reduction of Ge QDs density and PL intensity wer observed from the boron-doped Ge QDs. The intensity enhancement of PL could be attributed to the sufficient supply of electrons in Ge QDs for radiative recombination.
-
Keywords:
- Ge/Si quantum dots /
- phosphorus-doped /
- photoluminescence
[1] Ng W L, Lourenco M A, Gwilliam R M, Ledain S, Shao G, Homewood K P 2001 Nature 410 192
[2] Green M A, Zhao J, Wang A, Reece P J, Gal M 2001 Nature 412 805
[3] Stangl J, Holy V, Bauer G 2004 Rev. Mod. Phys. 76 725
[4] Liu J L, Wu W G, Balandin A, Jin G L, Wang K L 1999 Appl. Phys. Lett. 74 185
[5] Fukatsu S, Sunamura H, Shiraki Y, Komiyama S 1997 Appl. Phys. Lett. 71 258
[6] Das S, Das K, Singha R, Manna S, Dhar A, Ray S, Raychaudhuri A 2011 Nanoscale Res. Lett. 6 416
[7] El Kurdi M, David S, Boucaud P, Kammerer C, Li X, Le Thanh V, Sauvage S, Lourtioz J M 2004 J. Appl. Phys. 96 997
[8] Vahala K J, Zah C E 1988 Appl. Phys. Lett. 52 1945
[9] Shi W H, Li C B, Luo L P, Cheng B W, Wang Q M 2005 J. Cryst. Growth 279 329
[10] Liu Z, Cheng B W, Hu W X, Su S J, Li C B, Wang Q M 2012 Nanoscale Res. Lett. 7 383
[11] Mooney P M, Dacol F H, Tsang J C, Chu J O 1993 Appl. Phys. Lett. 62 2069
[12] Peng Y H, Hsu C-H, Kuan C H, Liu C W, Chen P S, Tsai M J, Suen Y W 2004 Appl. Phys. Lett. 85 6107
-
[1] Ng W L, Lourenco M A, Gwilliam R M, Ledain S, Shao G, Homewood K P 2001 Nature 410 192
[2] Green M A, Zhao J, Wang A, Reece P J, Gal M 2001 Nature 412 805
[3] Stangl J, Holy V, Bauer G 2004 Rev. Mod. Phys. 76 725
[4] Liu J L, Wu W G, Balandin A, Jin G L, Wang K L 1999 Appl. Phys. Lett. 74 185
[5] Fukatsu S, Sunamura H, Shiraki Y, Komiyama S 1997 Appl. Phys. Lett. 71 258
[6] Das S, Das K, Singha R, Manna S, Dhar A, Ray S, Raychaudhuri A 2011 Nanoscale Res. Lett. 6 416
[7] El Kurdi M, David S, Boucaud P, Kammerer C, Li X, Le Thanh V, Sauvage S, Lourtioz J M 2004 J. Appl. Phys. 96 997
[8] Vahala K J, Zah C E 1988 Appl. Phys. Lett. 52 1945
[9] Shi W H, Li C B, Luo L P, Cheng B W, Wang Q M 2005 J. Cryst. Growth 279 329
[10] Liu Z, Cheng B W, Hu W X, Su S J, Li C B, Wang Q M 2012 Nanoscale Res. Lett. 7 383
[11] Mooney P M, Dacol F H, Tsang J C, Chu J O 1993 Appl. Phys. Lett. 62 2069
[12] Peng Y H, Hsu C-H, Kuan C H, Liu C W, Chen P S, Tsai M J, Suen Y W 2004 Appl. Phys. Lett. 85 6107
Catalog
Metrics
- Abstract views: 7232
- PDF Downloads: 684
- Cited By: 0