-
The Fourier mode coupling theory is applied to the analysis of the fiber Bragg grating based all-fiber acousto-optic modulator for the first time. Compared with the existing analysis methods, the algorithm of this model is simple and easy, and transmission characteristics of the modulator can be acquired effectively and efficiently. Based on the theory, the performances of the modulator, related to ultrasonic frequency and amplitude of acoustically induced strain, are investigated. Simulation results show that in reflection spectra of the modulator, the wavelength interval between the primary relection peak and the secondary relection peak is proportional to ultrasonic frequency, and the reflectivity of the reflection peak varies periodically with intensity change of the amplitude of acoustically induced strain. In addition, with the same amplitude of acoustically induced strain, more secondary reflections exist in the low-frequency ultrasonic modulated fiber Bragg grating, and the periodic variation of the energy reflected by fiber Bragg graing is more obvious. In the experiment, the fiber Bragg graing is modulated by an ultrasonic wave with a frequency of 885.5 KHz. The experimental results accord well with the simulation results.
-
Keywords:
- acousto-optic modulation /
- fiber Bragg grating /
- Fourier mode coupling theory /
- spectral characteristics
[1] Zhang W D, Huang L G, Gao F, Bo F, Xuan L, Zhang G Q, Xu J J 2012 Opt. Lett. 37 1241
[2] Kang M S, Lee M S, Yong J C, Kim B Y 2006 J. Lightwave Technol. 24 1812
[3] Wang D Y, Wang Y M, Gong J M, Wang A B 2011 Opt. Lett. 36 3392
[4] Liu W F, Russell P S J, Dong L 1997 Opt. Lett. 22 1515
[5] Zhang L J, Xin X J, Liu B, Yu J J, Zhang Q 2010 Opt. Express 18 18347
[6] Xin X J, Zhang L J, Liu B, Yu J J 2011 Opt. Express 19 7847
[7] Delgado-Pinar M, Zalvidea D, Diez A, Perez-Millan P, Andres M V 2006 Opt. Express 14 1106
[8] Qiu K, Wen F, Wu B J 2009 Acta Phys. Sin. 58 1726 (in Chinese) [邱昆, 文峰, 武保剑 2009 58 1726]
[9] Wang Y H, Ren W H, Liu Y, Tan Z W, Jian S S 2008 Acta Phys. Sin. 57 6393 (in Chinese) [王燕花, 任文华, 刘艳, 谭中伟, 简水生 2008 57 6393]
[10] Peral E, Capmany J 1997 J. Lightwave Technol. 15 1295
[11] Yamada M, Sakuda K 1987 Appl. Opt. 26 3474
[12] Li Z X, Pei L, Qi C H, Peng W J, Ning T G, Zhao R F, Gao S 2010 Acta Phys. Sin. 59 8615 (in Chinese) [李卓轩, 裴丽, 祁春慧, 彭万敬, 宁提纲, 赵瑞峰, 高嵩 2010 59 8615]
[13] Russell P S J, Liu W F 2000 J. Opt. Soc. Am. A 17 1421
[14] Oliveira R A, Neves Jr P T, Pereira J T, Pohl P A A 2008 Opt. Commun. 281 4899
[15] Zeng X K, Rao Y J 2010 Acta Phys. Sin. 59 8597 (in Chinese) [曾祥凯, 饶云江 2010 59 8597]
-
[1] Zhang W D, Huang L G, Gao F, Bo F, Xuan L, Zhang G Q, Xu J J 2012 Opt. Lett. 37 1241
[2] Kang M S, Lee M S, Yong J C, Kim B Y 2006 J. Lightwave Technol. 24 1812
[3] Wang D Y, Wang Y M, Gong J M, Wang A B 2011 Opt. Lett. 36 3392
[4] Liu W F, Russell P S J, Dong L 1997 Opt. Lett. 22 1515
[5] Zhang L J, Xin X J, Liu B, Yu J J, Zhang Q 2010 Opt. Express 18 18347
[6] Xin X J, Zhang L J, Liu B, Yu J J 2011 Opt. Express 19 7847
[7] Delgado-Pinar M, Zalvidea D, Diez A, Perez-Millan P, Andres M V 2006 Opt. Express 14 1106
[8] Qiu K, Wen F, Wu B J 2009 Acta Phys. Sin. 58 1726 (in Chinese) [邱昆, 文峰, 武保剑 2009 58 1726]
[9] Wang Y H, Ren W H, Liu Y, Tan Z W, Jian S S 2008 Acta Phys. Sin. 57 6393 (in Chinese) [王燕花, 任文华, 刘艳, 谭中伟, 简水生 2008 57 6393]
[10] Peral E, Capmany J 1997 J. Lightwave Technol. 15 1295
[11] Yamada M, Sakuda K 1987 Appl. Opt. 26 3474
[12] Li Z X, Pei L, Qi C H, Peng W J, Ning T G, Zhao R F, Gao S 2010 Acta Phys. Sin. 59 8615 (in Chinese) [李卓轩, 裴丽, 祁春慧, 彭万敬, 宁提纲, 赵瑞峰, 高嵩 2010 59 8615]
[13] Russell P S J, Liu W F 2000 J. Opt. Soc. Am. A 17 1421
[14] Oliveira R A, Neves Jr P T, Pereira J T, Pohl P A A 2008 Opt. Commun. 281 4899
[15] Zeng X K, Rao Y J 2010 Acta Phys. Sin. 59 8597 (in Chinese) [曾祥凯, 饶云江 2010 59 8597]
Catalog
Metrics
- Abstract views: 7596
- PDF Downloads: 1777
- Cited By: 0