-
Based on the gaussian-type distributions of bond energy and coordination number for barium titanate systematic ferroelectrics doping with a certain quantity of dopants, the bond energy and coordination number fluctuation model is used to derive the relationship between peak of dielectric constant and testing frequency. The universal Vogel-Fulcher function of the relationship is demonstrated, when the fluctuations of bond energy and coordination number approach to each other. The frozen temperature of the Vogel-Fulcher function is related only to actuation energy and relative fluctuation of bond energy. The mechanisms of dispersion due to homogenous distribution of dopants in low doping concentration and relaxor due to gaussian-type distribution of dopants over a critical concentration are investigated. It is suggested that strong inhibitory effect of substituted ions on formation and growth of ferroelectric domain is the main source of bond energy fluctuation and coordination number fluctuation.
-
Keywords:
- relaxor ferroelectrics /
- dielectric dispersion /
- bond energy /
- coordination number
[1] Smolenskii G A 1970 J. Phys. Soc. Jpn. 28 26
[2] Yao X, Chen Z L, Cross L E 1983 J. Appl. Phys. 54 3399
[3] Yao X, Chen Z L, Cross L E 1984 Ferroelectrics 54 163
[4] Cross L E 1987 Ferroelectrics 76 241
[5] Simon A, Ravez J, Maglione M 2004 J. Phys. Cond. Matter 16 963
[6] Tang X G, Chew K H, Chan H L W 2004 Acta Mater. 52 5177
[7] Chen W, Cao W Q 2012 Acta Phys. Sin. 61 097701 (in Chinese) [陈威, 曹万强 2012 61 097701]
[8] Ikeda M, Aniya M 2010 Intermetallics 18 1796
[9] Aniya M 2002 J. Therm. Anal. Calorim. 69 971
[10] Vilgis T A 1990 J. Phys. Cond. Matter 2 3667
[11] Farhi R, Marssi M E, Simon A, Ravez J 1999 Eur. Phys. J. B 9 559
[12] Mao C L, Dong X L, Wang G S, Yao C H, Cao F, Cao S, Yang L H, Wang Y L 2009 Acta Phys. Sin. 58 5784 (in Chinese) [毛朝梁, 董显林, 王根水, 姚春华, 曹 菲, 曹 盛, 杨丽慧, 王永令 2009 58 5784]
[13] Shang Y L, Shu M F, Chen W, Cao W Q 2012 Acta Phys. Sin. 61 197701 (in Chinese) [尚玉黎, 舒明飞, 陈威, 曹万强 2012 61 197701]
[14] Ciomaga C E, Buscaglia M T, Buscaglia V, Mitoseriu L 2011 J. Appl. Phys. 110 114110
-
[1] Smolenskii G A 1970 J. Phys. Soc. Jpn. 28 26
[2] Yao X, Chen Z L, Cross L E 1983 J. Appl. Phys. 54 3399
[3] Yao X, Chen Z L, Cross L E 1984 Ferroelectrics 54 163
[4] Cross L E 1987 Ferroelectrics 76 241
[5] Simon A, Ravez J, Maglione M 2004 J. Phys. Cond. Matter 16 963
[6] Tang X G, Chew K H, Chan H L W 2004 Acta Mater. 52 5177
[7] Chen W, Cao W Q 2012 Acta Phys. Sin. 61 097701 (in Chinese) [陈威, 曹万强 2012 61 097701]
[8] Ikeda M, Aniya M 2010 Intermetallics 18 1796
[9] Aniya M 2002 J. Therm. Anal. Calorim. 69 971
[10] Vilgis T A 1990 J. Phys. Cond. Matter 2 3667
[11] Farhi R, Marssi M E, Simon A, Ravez J 1999 Eur. Phys. J. B 9 559
[12] Mao C L, Dong X L, Wang G S, Yao C H, Cao F, Cao S, Yang L H, Wang Y L 2009 Acta Phys. Sin. 58 5784 (in Chinese) [毛朝梁, 董显林, 王根水, 姚春华, 曹 菲, 曹 盛, 杨丽慧, 王永令 2009 58 5784]
[13] Shang Y L, Shu M F, Chen W, Cao W Q 2012 Acta Phys. Sin. 61 197701 (in Chinese) [尚玉黎, 舒明飞, 陈威, 曹万强 2012 61 197701]
[14] Ciomaga C E, Buscaglia M T, Buscaglia V, Mitoseriu L 2011 J. Appl. Phys. 110 114110
Catalog
Metrics
- Abstract views: 7155
- PDF Downloads: 602
- Cited By: 0