Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bonding nature of the amorphous structure studied by a combination of cutoff and electronic localization function

Wang Xin-Yang Chen Nian-Ke Wang Xue-Peng Zhang Bin Chen Zhi-Hong Li Xian-Bin Liu Xian-Qiang

Citation:

Bonding nature of the amorphous structure studied by a combination of cutoff and electronic localization function

Wang Xin-Yang, Chen Nian-Ke, Wang Xue-Peng, Zhang Bin, Chen Zhi-Hong, Li Xian-Bin, Liu Xian-Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The analysis of the local structure of covalent glass is one of the major challenges for analyzing the amorphous structure. Usually, people use a cutoff distance to determine the coordinated atoms and relevant structural information, such as coordination number and bond angles. Recently, the electron localization function (ELF) has been used to analyze the local structure of amorphous Ge2Sb2Te5. But how to determine the EFL threshold and cutoff distance has not been reported. Here, according to the ab-initio calculations, we systematically investigate the relationship between the bond number and the ELF threshold, and also the cutoff distance in amorphous GeTe. The reasonable value of the ELF threshold and the cutoff distance are determined according to the inflection point and slope change of the bond number with ELF value respectively. Furthermore, the minimal ELF value distributions of Ge-Ge, Ge-Te and Te-Te bonds are presented. The comparison shows that the majority of removed bonds in structural analysis are weak Ge-Te bonds due to the low localization degree of electron. In contrast, the stronger Ge-Ge bonds are almost unchanged when changing the ELF threshold value from 0.58 to 0.63 because of the high localization degree of electron. The average minimal ELF value of Ge-Te bonds in crystalline GeTe is calculated, and it is close to the ELF threshold that is determined by the inflection point. t is easy to find that the Ge-Te bonds which are removed by increasing the ELF threshold are relatively weak. Therefore, these weaker bonds should be removed in structure analysis, which also means that the ELF threshold determined by the inflection point are reasonable value. Finally, based on the EFL threshold value, the coordination number and bond angle distribution of Ge in amorphous GeTe are obtained. The analysis of the coordination number of the Ge atoms shows that as the ELF threshold increases from 0.58 to 0.63, the 5- fold Ge atoms almost disappear because they are against the (8-N) rule. Furthermore, when the ELF threshold value is 0.58, the bond angle distribution analysis of Ge atoms shows that the local structure is a configuration that is mainly defectively octahedral (3-fold Ge) and distorted tetrahedral (4-fold Ge), but it remains unchanged when the threshold value increases to 0.63. It further demonstrates that all the removed chemical bonds are weaker ones as the ELF threshold increases. This approach is useful to improve the accuracy of amorphous structure analysis by obtaining the more reasonable inter-atomic bonding information. And it should be applied to the structural analyses of other systems generally.
      Corresponding author: Liu Xian-Qiang, xqliu@bjut.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11204008).
    [1]

    Zallen R 1983 The Physics of Amorphous Solids (New York: Wiley) pp10-16

    [2]

    Ziman J M 1979 Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge: Cambridge University Press) pp51-56

    [3]

    Yonezawa F, Ninomiya T 1983 Topological Disorder in Condensed Matter (Berlin: Springer) pp30-39

    [4]

    McGreevy R L, Pusztai L 1988 Mol. Simul. 1 359

    [5]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [6]

    Akola J, Jones R O 2007 Phys. Rev. B 76 235201

    [7]

    Xu M, Cheng Y Q, Wang L, Sheng H W, Meng Y, Yang W G, Han X D, Ma E 2012 Proc. Natl. Acad. Sci. U. S. A. 109 E1055

    [8]

    Xu M, Cheng Y Q, Sheng H W, Ma E 2009 Phys. Rev. Lett. 103 195502

    [9]

    Hughbanks T, Hoffmann R 1983 J. Am. Chem. Soc. 105 3528

    [10]

    Silvi B, Savin A 1994 Nature 371 683

    [11]

    Ovshinsky S R 1968 Phys. Rev. Lett. 21 1450

    [12]

    Yoon S M, Choi K J, Lee N Y, Jung S W, Lee S Y, Park Y S, Yu B G, Lee S J, Yoon S G 2008 J. Electrochem. Soc. 155 H421

    [13]

    Wang K, Steitner C, Warnwangi D, Ziegler S, Wuttig M, Tomforde J, Bensch W 2007 Microsyst. Technol. 13 203

    [14]

    Welnic W, Wuttig M 2008 Mater. Today 11 20

    [15]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [16]

    Kolobov A V, Fons P, Frenkel A I, Ankudinov A L, Tominaga J, Uruga T 2004 Nat. Mater. 3 703

    [17]

    Caravati S, Bernasconi M, Khne T D, Krack M, Parrinello M 2007 Appl. Phys. Lett. 91 171906

    [18]

    Lee T H, Elliott S R 2011 Phys. Rev. Lett. 107 145702

    [19]

    Zhang W, Ronneberger I, Li Y, Mazzarello R 2013 Monatsh. Chem. 145 97

    [20]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [21]

    Rao X, Wang R Z, Cao J X, Yan H 2015 Acta Phys. Sin. 64 107303 (in Chinese) [饶雪, 王如志, 曹觉先, 严辉 2015 64 107303]

    [22]

    Ernzerhof M, Scuseria G E 1999 J. Chem. Phys. 110 5029

    [23]

    Tuckerman M, Berne B J, Martyna G J 1992 J. Chem. Phys. 97 1990

    [24]

    Nonaka T, Ohbayashi G, Toriumi Y, Mori Y, Hashimoto H 2000 Thin Solid Films 370 258

    [25]

    Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M 2008 Nat. Mater. 7 972

    [26]

    Welnic W, Botti S, Reining L, Wuttig M 2007 Phys. Rev. Lett. 98 4

  • [1]

    Zallen R 1983 The Physics of Amorphous Solids (New York: Wiley) pp10-16

    [2]

    Ziman J M 1979 Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge: Cambridge University Press) pp51-56

    [3]

    Yonezawa F, Ninomiya T 1983 Topological Disorder in Condensed Matter (Berlin: Springer) pp30-39

    [4]

    McGreevy R L, Pusztai L 1988 Mol. Simul. 1 359

    [5]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [6]

    Akola J, Jones R O 2007 Phys. Rev. B 76 235201

    [7]

    Xu M, Cheng Y Q, Wang L, Sheng H W, Meng Y, Yang W G, Han X D, Ma E 2012 Proc. Natl. Acad. Sci. U. S. A. 109 E1055

    [8]

    Xu M, Cheng Y Q, Sheng H W, Ma E 2009 Phys. Rev. Lett. 103 195502

    [9]

    Hughbanks T, Hoffmann R 1983 J. Am. Chem. Soc. 105 3528

    [10]

    Silvi B, Savin A 1994 Nature 371 683

    [11]

    Ovshinsky S R 1968 Phys. Rev. Lett. 21 1450

    [12]

    Yoon S M, Choi K J, Lee N Y, Jung S W, Lee S Y, Park Y S, Yu B G, Lee S J, Yoon S G 2008 J. Electrochem. Soc. 155 H421

    [13]

    Wang K, Steitner C, Warnwangi D, Ziegler S, Wuttig M, Tomforde J, Bensch W 2007 Microsyst. Technol. 13 203

    [14]

    Welnic W, Wuttig M 2008 Mater. Today 11 20

    [15]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [16]

    Kolobov A V, Fons P, Frenkel A I, Ankudinov A L, Tominaga J, Uruga T 2004 Nat. Mater. 3 703

    [17]

    Caravati S, Bernasconi M, Khne T D, Krack M, Parrinello M 2007 Appl. Phys. Lett. 91 171906

    [18]

    Lee T H, Elliott S R 2011 Phys. Rev. Lett. 107 145702

    [19]

    Zhang W, Ronneberger I, Li Y, Mazzarello R 2013 Monatsh. Chem. 145 97

    [20]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [21]

    Rao X, Wang R Z, Cao J X, Yan H 2015 Acta Phys. Sin. 64 107303 (in Chinese) [饶雪, 王如志, 曹觉先, 严辉 2015 64 107303]

    [22]

    Ernzerhof M, Scuseria G E 1999 J. Chem. Phys. 110 5029

    [23]

    Tuckerman M, Berne B J, Martyna G J 1992 J. Chem. Phys. 97 1990

    [24]

    Nonaka T, Ohbayashi G, Toriumi Y, Mori Y, Hashimoto H 2000 Thin Solid Films 370 258

    [25]

    Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M 2008 Nat. Mater. 7 972

    [26]

    Welnic W, Botti S, Reining L, Wuttig M 2007 Phys. Rev. Lett. 98 4

  • [1] Ma Kun, Zhu Lin-Fan, Xie Lu-You. Non-dipole effects on angular distribution of photoelectrons in sequential two-photon double ionization of Ar atom and K+ ion. Acta Physica Sinica, 2022, 71(6): 063201. doi: 10.7498/aps.71.20211905
    [2] Ma Kun, Xie Lu-You, Dong Chen-Zhong. Theoretical calculations on photoelectron angular distribution of sequential two-photon double ionization for Ar atom. Acta Physica Sinica, 2020, 69(5): 053201. doi: 10.7498/aps.69.20191814
    [3] Ma Kun, Xie Lu-You, Zhang Deng-Hong, Jiang Jun, Dong Chen-Zhong. Non-dipole effects in the angular distributions of photoelectrons on sodium-like ions. Acta Physica Sinica, 2017, 66(4): 043201. doi: 10.7498/aps.66.043201
    [4] Ma Kun, Xie Lu-You, Zhang Deng-Hong, Dong Chen-Zhong, Qu Yi-Zhi. Theoretical calculation of the photoelectron angular distribution of neon. Acta Physica Sinica, 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [5] Wang Jin-Xia, Shi Ying-Long, Zhang Deng-Hong, Xie Lu-You, Dong Chen-Zhong. Theoretical study on angular distribution and polarization characteristics of X-ray emission following dielectronic recombination of lithium-like ions. Acta Physica Sinica, 2013, 62(23): 233401. doi: 10.7498/aps.62.233401
    [6] Cao Wan-Qiang, Shu Ming-Fei. Bond energy and coordination number model for relaxor ferroelectrics. Acta Physica Sinica, 2013, 62(1): 017701. doi: 10.7498/aps.62.017701
    [7] Ju Zhi-Ping, Cao Wu-Fei, Liu Xiao-Wei. Study of scattering angular distribution of proton using Monte-Carlo method. Acta Physica Sinica, 2009, 58(1): 174-177. doi: 10.7498/aps.58.174
    [8] Zheng Zhi-Yuan, Li Yu-Tong, Yuan Xiao-Hui, Xu Miao-Hua, Liang Wen-Xi, Yu Quan-Zhi, Zhang Yi, Wang Zhao-Hua, Wei Zhi-Yi, Zhang Jie. Measurements of angular distribution and energy spectrum of hot electrons. Acta Physica Sinica, 2006, 55(10): 5349-5353. doi: 10.7498/aps.55.5349
    [9] Peng Xiao-Yu, Zhang Jie, Jin Zhan, Liang Tian-Jiao, Zhong Jia-Yong, Wu Hui-Chun, Liu Yun-Quan, Wang Zhao-Hua, Chen Zheng-Lin, Sheng Zheng-Ming, Li Yu-Tong, Wei Zhi-Yi. Angular distribution of hot electrons emitted from ethanol droplets irradiated by ultrashort laser pulses. Acta Physica Sinica, 2004, 53(8): 2625-2632. doi: 10.7498/aps.53.2625
    [10] Liu Hong-Xia, Hao Yue, Zhang Tao, Zheng Xue-Feng, Ma Xiao-Hua. Study on the kink effect in AlGaAs/InGaAs/GaAs PHEMTs. Acta Physica Sinica, 2003, 52(4): 984-988. doi: 10.7498/aps.52.984
    [11] ZHANG SUI-MENG, WU XING-JU. A THEORETICAL STUDY ON ELECTRON ANGULAR DISTRIBUTIONS FOR (e,2e) PROCESSES ON HYDROGEN. Acta Physica Sinica, 2001, 50(11): 2137-2143. doi: 10.7498/aps.50.2137
    [12] QI ZE-MING, SHI CHAO-SHU, WANG ZHENG, WEI YA-GUANG, XIE YA-NING, HU TIAN-DOU, LI FU-LI. AMORPHOUS AND NANOCRYSTALLINE ZrO2·Y2O3(15%) STUDIED BY EXTENDED X-RAY ABSORPTION FINE STRUCTURE. Acta Physica Sinica, 2001, 50(7): 1318-1323. doi: 10.7498/aps.50.1318
    [13] LI SHAO-PU, LIU QIANG, XU XIANG-DONG, QIAN QING, CHEN XUE-JUN. CALCULATIONS OF POSITRON SCATTERING BY ATOMIC HYDROGEN BASED ON A MULTIPLE-SCATTERING EXPANSION METHOD. Acta Physica Sinica, 1993, 42(6): 911-917. doi: 10.7498/aps.42.911
    [14] LI TONG, XU XIANG-DONG, LIU QIANG, QIAN QING, CHEN XUE-JUN. DIFFERENTIAL CROSS SECTION CALCULATIONS OF THE e-H ELASTIC SCATTERING BASED ON A MULTIPLE-SCATTERING EXPANSION METHOD. Acta Physica Sinica, 1993, 42(6): 905-910. doi: 10.7498/aps.42.905
    [15] XU HUI, ZENG HONG-TAO. DISTRIBUTION OF ELECTRONIC LOCALISATION IN THE DISORDERED SYSTEM. Acta Physica Sinica, 1992, 41(10): 1666-1671. doi: 10.7498/aps.41.1666
    [16] CHEN BAO-ZHEN. ANGULAR DISTRIBUTION OF ABOVE-THRESHOLD IONIZATION OF H ATOM. Acta Physica Sinica, 1990, 39(1): 40-45. doi: 10.7498/aps.39.40
    [17] WANG HONG, LIU YAN, ZHOU YA-DONG, CHEN GANG, HO BO-QING, GU BEN-YUAN. ANALYSIS OF THE COORDINATION NUMBER OF THE ATOM W IN ZnWO4 SINGLE CRYSTALS. Acta Physica Sinica, 1988, 37(1): 43-48. doi: 10.7498/aps.37.43
    [18] DU YOU-MING, LIANG JIA-CHANG. THE ELECTRONIC STRUCTURE AND ABSORPTION SPECTRA OF THE TETRAHEDRAL HALIDE COMPLEXES OF Cu(II). Acta Physica Sinica, 1974, 23(3): 42-51. doi: 10.7498/aps.23.42
    [19] . Acta Physica Sinica, 1966, 22(3): 374-376. doi: 10.7498/aps.22.374
    [20] ZHU YEI-ZHUNG, LEE TSE-CHING. ANGULAR DISTRIBUTION OF THE FISSION FRAGMENTS AND THE STRUCTURE AT THE SADDLE POINT. Acta Physica Sinica, 1964, 20(10): 1003-1018. doi: 10.7498/aps.20.1003
Metrics
  • Abstract views:  6470
  • PDF Downloads:  394
  • Cited By: 0
Publishing process
  • Received Date:  09 April 2016
  • Accepted Date:  24 June 2016
  • Published Online:  05 September 2016

/

返回文章
返回
Baidu
map