Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of pressure and incident power on self-organization pattern structure during microwave breakdown in high pressure air

Zhu Guo-Qiang Jean-Pierre Boeuf Li Jin-Xian

Citation:

Effects of pressure and incident power on self-organization pattern structure during microwave breakdown in high pressure air

Zhu Guo-Qiang, Jean-Pierre Boeuf, Li Jin-Xian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Pressure and microwave power are the most important parameters during microwave breakdown in air and affect the self-organization plasma pattern structure and its propagation directly. In order to study the effects of pressure and microwave power, an effective-diffusion fluid plasma equation is solved together with Maxwell's equations, and the double grid method is also used to meet the different grid size requirement of plasma equation and finite-difference-time-domain for Maxwell's equations. The numerical results show that with lower pressure the plasma behaves as a more diffuse plasmoid instead of a well defined plasma pattern structure under higher pressure, and the increase of incident microwave power will lead to a rapid growth of the front propagation velocity and a well separated and sharp pattern structure, and the higher incident power also results in jump-like front propagation.
    • Funds: Project supported by the Fundamental Research Fund of Northwestern Polytechnical University, China (Grant No. JC20120217).
    [1]

    MacDonald D 1966 Microwave Breakdown in Gases (New York: John Wiley & Sons)

    [2]

    Litvak A 1994 Freely localized gas discharges in microwave beams. in Applications of High Power Microwaves, edited by Gaponov-Grekhov A V, Granatstein V L (Boston: Artech House) pp145-167

    [3]

    Vikharev A L, Gil'denburg V B, Golubev S V, Eremin B G, Ivanov O A, Litvak A G, Stepanov A N, Yunakovskii A D 1988 Sov. Phys. JETP 67 724

    [4]

    Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J 2008 Phys. Rev. Lett. 100 035003

    [5]

    Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J, Edmiston G F, Neuber A A, Oda Y 2009 Phys. Plasma 16 055702

    [6]

    Cook A, Shapiro M, Temkin R 2010 Appl. Phys. Lett. 97 011504

    [7]

    Nam S K, Verboncoeur J P 2009 Phys. Rev. Lett. 103 055004

    [8]

    Boeuf J P, Chaudhury B, Zhu G Q 2010 Phys. Rev. Lett. 104 015002

    [9]

    Chaudhury B, Boeuf J P, Zhu G Q 2010 Phys. Plasma 17 123505

    [10]

    Zhu G Q, Boeuf J P, Chaudhury B 2011 Plasma Sources Sci. Technol. 20 035007

    [11]

    Chaudhury B, Boeuf J P, Zhu G Q 2011 J. Appl. Phys. 110 113306

    [12]

    Ebert U, Saarloos W 2000 Physica D: Nonlinear Phenomena 164 1

    [13]

    Kunz K S, Luebbers R J 1993 The Finite Difference Time Domain Method for Electromagnetics (Baca Raton, Ann Arbor, London, Tokyo: CRC Press) p13

    [14]

    Cummer S A 1997 IEEE Trans. on Antennas and Propagation 45 3

    [15]

    Yee K K 1966 IEEE Trans. on Antennas and Propagation AP-14 3

    [16]

    Mur G 1981 IEEE Trans. on Electromagnetic Compatibility EMC-23 4

    [17]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp53-57

    [18]

    Warne L K, Jorgenson R E, Nicolaysen S D 2003 Ionization Coefficient Approach to Modeling Breakdown in Nonuniform Geometries Sandia Report SAND 2003-4078

  • [1]

    MacDonald D 1966 Microwave Breakdown in Gases (New York: John Wiley & Sons)

    [2]

    Litvak A 1994 Freely localized gas discharges in microwave beams. in Applications of High Power Microwaves, edited by Gaponov-Grekhov A V, Granatstein V L (Boston: Artech House) pp145-167

    [3]

    Vikharev A L, Gil'denburg V B, Golubev S V, Eremin B G, Ivanov O A, Litvak A G, Stepanov A N, Yunakovskii A D 1988 Sov. Phys. JETP 67 724

    [4]

    Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J 2008 Phys. Rev. Lett. 100 035003

    [5]

    Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J, Edmiston G F, Neuber A A, Oda Y 2009 Phys. Plasma 16 055702

    [6]

    Cook A, Shapiro M, Temkin R 2010 Appl. Phys. Lett. 97 011504

    [7]

    Nam S K, Verboncoeur J P 2009 Phys. Rev. Lett. 103 055004

    [8]

    Boeuf J P, Chaudhury B, Zhu G Q 2010 Phys. Rev. Lett. 104 015002

    [9]

    Chaudhury B, Boeuf J P, Zhu G Q 2010 Phys. Plasma 17 123505

    [10]

    Zhu G Q, Boeuf J P, Chaudhury B 2011 Plasma Sources Sci. Technol. 20 035007

    [11]

    Chaudhury B, Boeuf J P, Zhu G Q 2011 J. Appl. Phys. 110 113306

    [12]

    Ebert U, Saarloos W 2000 Physica D: Nonlinear Phenomena 164 1

    [13]

    Kunz K S, Luebbers R J 1993 The Finite Difference Time Domain Method for Electromagnetics (Baca Raton, Ann Arbor, London, Tokyo: CRC Press) p13

    [14]

    Cummer S A 1997 IEEE Trans. on Antennas and Propagation 45 3

    [15]

    Yee K K 1966 IEEE Trans. on Antennas and Propagation AP-14 3

    [16]

    Mur G 1981 IEEE Trans. on Electromagnetic Compatibility EMC-23 4

    [17]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp53-57

    [18]

    Warne L K, Jorgenson R E, Nicolaysen S D 2003 Ionization Coefficient Approach to Modeling Breakdown in Nonuniform Geometries Sandia Report SAND 2003-4078

Metrics
  • Abstract views:  7077
  • PDF Downloads:  505
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2012
  • Accepted Date:  24 June 2012
  • Published Online:  05 December 2012

/

返回文章
返回
Baidu
map