-
The characteristics of dynamic gratings greatly affect the linewidth and mode stability of ultra-narrow linewidth erbium-doped fiber (EDF) lasers. In this paper, we propose a novel method to measure the temporal evolution of the reflectance spectra of the dynamic gratings recorded in EDF based on the transient effect of the erbium ions by applying optical frequency modulation on the written light. The transient reflectance spectra of the linear configuration dynamic gratings are measured, and the influences of the written optical power and the terminal reflectivity on the response characteristics of the gratings are also studied. Experimental results show that the first order zero point frequency of the gratings formed in a 3-m-long erbium doped fiber is 30 MHz which accords with the value obtained from the steady state theory. The relative reflectivity change decreases with the increase of input optical power or terminal reflectivity. The measured maximal changes occur at low input power or terminal reflectivity. The grating building time also decreases with the increase of optical power, and it is less than 1 ms when input power is larger than 4 times the saturable power. This phenomenon can be explained by the process of two-wave mixing.
-
Keywords:
- dynamical gratings /
- two wave mixing /
- fiber laser /
- mode hopping
[1] Frisken S J 1992 Opt. Lett. 17 1776
[2] Fischer B, Zyskind J L, Sulhoff J W, Digiovanni D J 1993 Electron. Lett. 29 1858
[3] Fischer B, Zyskind J L, Sulhoff J W, Digiovanni D J 1993 Opt. Lett. 18 2108
[4] Feuer M D 1998 IEEE Photon. Tech. Lett. 10 1587
[5] Havstad S A, Fischer B, Willner A E, Wickham M G 1999 Opt. Lett. 24 1466
[6] Fan X Y, He Z Y, Mizuno Y, Hotate K 2005 Opt. Express 13 5756
[7] Horowitz M, Daisy R, Fischer B, Zyskind J L 1994 Opt. Lett. 19 1406
[8] Cheng Y, Kringlebotn J T, Loh W H, Laming R I, Payne D N 1995 Opt. Lett. 20 875
[9] Meng Z, Stewart G, Whitenett G 2006 J. Lightwave Technol. 24 2179
[10] Moshe H, Ron D, Fischer B 1996 Opt. Lett. 21 299
[11] Stepanov S, Hernández E, Plata M 2004 Opt. Lett. 29 1327
[12] Stepanov S, Cota F P 2007 Opt. Lett. 32 2532
[13] Fan X Y, He Z Y, Hotate K 2006 Opt. Express 14 556
[14] Liang X, Yao Q, Hu Y M, Xiong S D, Hu Z L, Rao W 2009 Acta Opt. Sin. 29 437 (in Chinese) [梁迅, 姚琼, 胡永明, 熊水东, 胡正良, 饶伟 2009 光学学报 29 437]
[15] Barmenkov Y O, Kiryanov A V, Andrés M V 2005 IEEE J. Quantum. Elect. 41 1176
[16] Stepanov S 2008 J. Phys. D: Appl. Phys. 41 224002
-
[1] Frisken S J 1992 Opt. Lett. 17 1776
[2] Fischer B, Zyskind J L, Sulhoff J W, Digiovanni D J 1993 Electron. Lett. 29 1858
[3] Fischer B, Zyskind J L, Sulhoff J W, Digiovanni D J 1993 Opt. Lett. 18 2108
[4] Feuer M D 1998 IEEE Photon. Tech. Lett. 10 1587
[5] Havstad S A, Fischer B, Willner A E, Wickham M G 1999 Opt. Lett. 24 1466
[6] Fan X Y, He Z Y, Mizuno Y, Hotate K 2005 Opt. Express 13 5756
[7] Horowitz M, Daisy R, Fischer B, Zyskind J L 1994 Opt. Lett. 19 1406
[8] Cheng Y, Kringlebotn J T, Loh W H, Laming R I, Payne D N 1995 Opt. Lett. 20 875
[9] Meng Z, Stewart G, Whitenett G 2006 J. Lightwave Technol. 24 2179
[10] Moshe H, Ron D, Fischer B 1996 Opt. Lett. 21 299
[11] Stepanov S, Hernández E, Plata M 2004 Opt. Lett. 29 1327
[12] Stepanov S, Cota F P 2007 Opt. Lett. 32 2532
[13] Fan X Y, He Z Y, Hotate K 2006 Opt. Express 14 556
[14] Liang X, Yao Q, Hu Y M, Xiong S D, Hu Z L, Rao W 2009 Acta Opt. Sin. 29 437 (in Chinese) [梁迅, 姚琼, 胡永明, 熊水东, 胡正良, 饶伟 2009 光学学报 29 437]
[15] Barmenkov Y O, Kiryanov A V, Andrés M V 2005 IEEE J. Quantum. Elect. 41 1176
[16] Stepanov S 2008 J. Phys. D: Appl. Phys. 41 224002
Catalog
Metrics
- Abstract views: 6423
- PDF Downloads: 444
- Cited By: 0