-
As the active areas and the connection part, semiconductor nanowires have ideal shapes which are beneficial to restricting the electron motion and atomic periodicity to one one-dimensional structure. The effective selection of material components in nanowires can enhance the advantages of low-dimensional structures by analyzing the features of bulk materials. Furthermore, the nanowire properties can also be tailored by controlling the internal or intrinsic characteristics such as diameters, crystallographic growth direction, structural phase, surface crystallographic plane or saturation degree, and by applying external influences such as electric, magnetic, thermal and force fields. The bulk InAs and GaSb have approximate lattice constants, thereby resulting in small lattice mismatch for InAs/GaSb heterostructures that can finally be grown into excellent infrared optoelectronic materials. Moreover, the bulk InAs has the lowest electron effective mass in binary III-V compound semiconductors, leading to high transport features for electrons distributing most in InAs layers of InAs/GaSb superlattices. In the present work, the zinc-blend (InAs)1/(GaSb)1 superlattice nanowires (subscript denotes the number of molecular or double-atomic layers) with [001] and [111] crystallographic wire-axes have been studied by first-principles calculations for their structural, electronic and mechanical properties together with the rule of different nanowire diameters (from ~0.5 to ~2.0 nm). We also analyze the stress effects from external forces and examine the electronic band-edge changes with strain in wire-axis direction to determine the deformation potentials.
-
Keywords:
- first-principles /
- InAs/GaSb superlattice /
- semiconductor nanowire /
- band structure
[1] Dick K A 2008 Prog. Cryst. Growth Charact. Mater. 54 138
[2] Gudiksen M S, Wang J, Lieber C M 2001 J. Phys. Chem. B 105 4062
[3] Björk M T, Ohlsson B J, Sass T, Persson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 80 1058
[4] Berkdemir C, Gülseren O 2009 Phys. Rev. B 80 115334
[5] Weber C, Fuhrer A, Fasth C, Lindwall G, Samuelson L, Wacker A 2010 Phys. Rev. Lett. 104 036801
[6] Murphy P G, Moore J E 2007 Phys. Rev. B 76 155313
[7] Ohlckers P, Pipinys P 2008 Physica E 40 2859
[8] Björk M T, Ohlsson B J, Thelander C, Persson A I, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 81 4458
[9] Qu F, Shi A, Yang M, Jiang J, Shen G, Yu R 2007 Anal. Chim. Acta 605 28
[10] Cui Y, Wei Q Q, Park H K, Lieber C M 2001 Science 293 1289
[11] Duan X, Huang Y, Agarwal R, Lieber C M 2003 Nature 421 241
[12] Dayeh S A, Soci C, Bao X Y, Wang D 2009 Nano Today 4 347
[13] Brown G J, Szmulowicz F, Haugan H, Mahalingam K, Houston S 2005 Microelectron. J. 36 256
[14] Piotrowski J, Rogalski A 2004 Infrared Phys. Technol. 46 115
[15] Shaw M J, Corbin E A, Kitchin M R, Jaros M 2001 Microelectron. J. 32 593
[16] Pistol M E, Pryor C E 2009 Phys. Rev. B 80 035316
[17] Persson M P, Xu H Q 2006 Phys. Rev. B 73 125346
[18] dos Santos C L, Piquini P 2010 Phys. Rev. B 81 075408
[19] Singh S, Srivastava P, Mishra A 2009 Physica E 42 46
[20] Thelander C, Björk M T, Larsson M W, Hansen A E, Wallenberg L R, Samuelson L 2004 Solid State Commun. 131 573
[21] Duan X, Lieber C M 2000 Adv. Mater. 12 298
[22] Clarke L J, Štich I, Payne M C 1992 Comp. Phys. Comm. 72 14
[23] Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[24] Hodak M, Wang S, Lu W C, Bernholc J 2007 Phys. Rev. B 76 085108
[25] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[26] Levine Z H, Allan D C 1989 Phys. Rev. Lett. 63 1719
[27] Wang L W, Zunger A 1996 Phys. Rev. B 53 9579
[28] Adachi S (Translated by Ji Z G ) 2009 Properties of Group-IV, III--V and m II--VI Semiconductors (Beijing: Science Press) (in Chinese) [Adachi S (季振国译) 2009 IV族, III---V族和II---VI族半导体材料的特性 (北京: 科学出版社)]
[29] Gasiorowicz S 2003 Quantum Physics (Hoboken: John Wiley and Sons) p66
[30] Wang F, Yu H, Jeong S, Pietryga J M, Hollingsworth J A, Gibbons P C, Buhro W E 2008 ACS Nano 2 1903
[31] Bardeen J, Shockley W 1950 Phys. Rev. 80 72
[32] Yu P Y, Cardona M 2005 Fundamentals of Semiconductors (New York: Springer) p25
[33] Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305
-
[1] Dick K A 2008 Prog. Cryst. Growth Charact. Mater. 54 138
[2] Gudiksen M S, Wang J, Lieber C M 2001 J. Phys. Chem. B 105 4062
[3] Björk M T, Ohlsson B J, Sass T, Persson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 80 1058
[4] Berkdemir C, Gülseren O 2009 Phys. Rev. B 80 115334
[5] Weber C, Fuhrer A, Fasth C, Lindwall G, Samuelson L, Wacker A 2010 Phys. Rev. Lett. 104 036801
[6] Murphy P G, Moore J E 2007 Phys. Rev. B 76 155313
[7] Ohlckers P, Pipinys P 2008 Physica E 40 2859
[8] Björk M T, Ohlsson B J, Thelander C, Persson A I, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 81 4458
[9] Qu F, Shi A, Yang M, Jiang J, Shen G, Yu R 2007 Anal. Chim. Acta 605 28
[10] Cui Y, Wei Q Q, Park H K, Lieber C M 2001 Science 293 1289
[11] Duan X, Huang Y, Agarwal R, Lieber C M 2003 Nature 421 241
[12] Dayeh S A, Soci C, Bao X Y, Wang D 2009 Nano Today 4 347
[13] Brown G J, Szmulowicz F, Haugan H, Mahalingam K, Houston S 2005 Microelectron. J. 36 256
[14] Piotrowski J, Rogalski A 2004 Infrared Phys. Technol. 46 115
[15] Shaw M J, Corbin E A, Kitchin M R, Jaros M 2001 Microelectron. J. 32 593
[16] Pistol M E, Pryor C E 2009 Phys. Rev. B 80 035316
[17] Persson M P, Xu H Q 2006 Phys. Rev. B 73 125346
[18] dos Santos C L, Piquini P 2010 Phys. Rev. B 81 075408
[19] Singh S, Srivastava P, Mishra A 2009 Physica E 42 46
[20] Thelander C, Björk M T, Larsson M W, Hansen A E, Wallenberg L R, Samuelson L 2004 Solid State Commun. 131 573
[21] Duan X, Lieber C M 2000 Adv. Mater. 12 298
[22] Clarke L J, Štich I, Payne M C 1992 Comp. Phys. Comm. 72 14
[23] Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[24] Hodak M, Wang S, Lu W C, Bernholc J 2007 Phys. Rev. B 76 085108
[25] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[26] Levine Z H, Allan D C 1989 Phys. Rev. Lett. 63 1719
[27] Wang L W, Zunger A 1996 Phys. Rev. B 53 9579
[28] Adachi S (Translated by Ji Z G ) 2009 Properties of Group-IV, III--V and m II--VI Semiconductors (Beijing: Science Press) (in Chinese) [Adachi S (季振国译) 2009 IV族, III---V族和II---VI族半导体材料的特性 (北京: 科学出版社)]
[29] Gasiorowicz S 2003 Quantum Physics (Hoboken: John Wiley and Sons) p66
[30] Wang F, Yu H, Jeong S, Pietryga J M, Hollingsworth J A, Gibbons P C, Buhro W E 2008 ACS Nano 2 1903
[31] Bardeen J, Shockley W 1950 Phys. Rev. 80 72
[32] Yu P Y, Cardona M 2005 Fundamentals of Semiconductors (New York: Springer) p25
[33] Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305
Catalog
Metrics
- Abstract views: 7422
- PDF Downloads: 623
- Cited By: 0