Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of effects of quantum confinement and strain on the electronic properties of GaSb nanowires

Li Li-Ming Ning Feng Tang Li-Ming

Citation:

First-principles study of effects of quantum confinement and strain on the electronic properties of GaSb nanowires

Li Li-Ming, Ning Feng, Tang Li-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using first-principles calculations based on density functional theory and projector augmented wave method, we investigate the electronic structures of one-dimensional wurtzite (WZ) and zinc-blende (ZB) GaSb nanowires with different diameters along the [0001] and [111] directions, respectively. The results show that the band gap of the GaSb nanowire increases as the size of the nanowire decreases due to the quantum confinement, and the band structures of the GaSb nanowires display an indirect band structures feature when the diameter of the nanowire is smaller than 3.0 nm, whereas bulk GaSb has a direct gap. Owing to the different responses of the valence band maximum/conduction band minimum energies to strain, the band structures of GaSb nanowires experiences a noticeable indirect-to-direct transition when the nanowires are under the uniaxial strain. For example, an indirect-to-direct band gap transition in the band structure of [111] ZB GaSb nanowires can be realized by applying a uniaxial tensile strain, and this transition in the band structure of [0001] WZ GaSb nanowires can take place by applying both uniaxial tensile and compression strain when the diameter of the nanowire is about 2.0 nm. In addition, it is found that carrier effective mass is dependent on the diameter of the GaSb nanowire, therefore both the electron and hole effective mass values decrease as diameter increases. It is also found that the hole effective mass is smaller than the electron effective mass for GaSb nanowires with the same directions and sizes, indicating that the hole transportation is more prominent than the electron transportation.
      Corresponding author: Tang Li-Ming, lmtang@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11347022) and the Natural Science Foundation of Hunan Province, China (Grant No. 14JJ3117).
    [1]

    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P 2001 Science 292 1897

    [2]

    Johnson J C, Yan H, Yang P, Saykally R J 2003 J. Phys. Chem. B 107 8816

    [3]

    Favier F, Walter E C, Zach M P, Benter T, Penner R M 2001 Science 293 2227

    [4]

    Wu F, Meng P W, Luo K, Liu Y F, Kan E J 2015 Chin. Phys. B 24 037504

    [5]

    Vurgaftman I, Meyer J R, Ram Mohan L R 2001 J. Appl. Phys. 89 5815

    [6]

    Gallo E M, Chen G, Currie M, Mcguckin T, Prete P, Lovergine N, Nabet B, Spanier J E 2011 Appl. Phys. Lett. 98 241113

    [7]

    Soci C, Zhang A, Bao X Y, Kim H, Lo Y, Wang D 2010 J. Nanosci. Nanotechnol. 10 1430

    [8]

    Mi Z, Chang Y L 2009 J. Nanophoton. 3 031602

    [9]

    Czaban J A, Thompson D A, Lapierre R R 2008 Nano Lett. 9 148

    [10]

    Patolsky F, Zheng G, Lieber C M 2006 Nanomedicine 151

    [11]

    Li J, Gilbertson A, Litvinenko K, Cohen L, Clowes S 2012 Appl. Phys. Lett. 101 152407

    [12]

    Dick K A, Deppert K, Mrtensson T, Mandl B, Samuelson L, Seifert W 2005 Nano Lett. 5 761

    [13]

    Park H D, Prokes S M, Cammarata R C 2005 Appl. Phys. Lett. 87 063110

    [14]

    Dayeh S A, Yu E T, Wang D 2007 Nano Lett. 7 2486

    [15]

    Scheffler M, Nadj-Perge S, Kouwenhoven L P, Borgstrm M T, Bakkers E P 2009 J. Appl. Phys. 106 124303

    [16]

    Ford A C, Ho J C, Chueh Y L, Tseng Y C, Fan Z, Guo J, Bokor J, Javey A 2008 Nano Lett. 9 360

    [17]

    Lassen B, Willatzen M, Melnik R, Lew Y V L 2006 J. Mater. Res. 21 2927

    [18]

    Sun W F, Zheng X X 2012 Acta Phys. Sin. 61 117103 (in Chinese) [孙伟峰, 郑晓霞 2012 61 117103]

    [19]

    Ning F, Tang L M, Zhang Y, Chen K Q 2013 J. Appl. Phys. 114 224304

    [20]

    Burke R A, Weng X, Kuo M W, Song Y W, Itsuno A M, Mayer T S, Durbin S M, Reeves R J, Redwing J M 2010 J. Electron. Mater. 39 355

    [21]

    Jeppsson M, Dick K A, Wagner J B, Caroff P, Deppert K, Samuelson L, Wernersson L E 2008 J. Cryst. Growth 310 4115

    [22]

    Jeppsson M, Dick K A, Nilsson H A, Skld N, Wagner J B, Caroff P, Wernersson L E 2008 J. Cryst. Growth 310 5119

    [23]

    Xu W, Chin A, Ye L, Ning C Z, Yu H 2012 J. Appl. Phys. 111 104515

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Ceperley D M, Alder B 1980 Phys. Rev. Lett. 45 566

    [26]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos J 1992 Rev. Mod. Phys. 64 1045

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [29]

    Zherebetskyy D, Wang L W 2014 Adv. Mater. Interfaces 1 1300131

    [30]

    Zhang Y, Tang L M, Ning F, Wang D, Chen K Q 2013 J. Phys. D: Appl. Phys. 46 175005

    [31]

    Deng H X, Li S S, Li J 2010 J. Phys. Chem. C 114 4841

    [32]

    Persson M P, Xu H Q 2002 Appl. Phys. Lett. 81 1309

    [33]

    Hong K H, Kim J, Lee S H, Shin J K 2008 Nano Lett. 8 1335

    [34]

    Xiang H J, Wei S H, Da Silva J L F, Li J 2008 Phys. Rev. B 78 193301

    [35]

    Xue H, Pan N, Li M, Wu Y, Wang X, Hou J G 2010 Nanotechnology 21 215701

    [36]

    Peng X, Tang F, Logan P 2011 J. Phys.: Condens. Matter 23 115502

    [37]

    Huang S, Yang L 2011 Appl. Phys. Lett. 98 093114

    [38]

    Peng X H, Ganti S, Alizadeh A, Sharma P, Kumar S K, Nayak S K 2006 Phys. Rev. B 74 035339

    [39]

    Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305

    [40]

    Wu Z, Neaton J B, Grossman J C 2009 Nano Lett. 9 2418

  • [1]

    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P 2001 Science 292 1897

    [2]

    Johnson J C, Yan H, Yang P, Saykally R J 2003 J. Phys. Chem. B 107 8816

    [3]

    Favier F, Walter E C, Zach M P, Benter T, Penner R M 2001 Science 293 2227

    [4]

    Wu F, Meng P W, Luo K, Liu Y F, Kan E J 2015 Chin. Phys. B 24 037504

    [5]

    Vurgaftman I, Meyer J R, Ram Mohan L R 2001 J. Appl. Phys. 89 5815

    [6]

    Gallo E M, Chen G, Currie M, Mcguckin T, Prete P, Lovergine N, Nabet B, Spanier J E 2011 Appl. Phys. Lett. 98 241113

    [7]

    Soci C, Zhang A, Bao X Y, Kim H, Lo Y, Wang D 2010 J. Nanosci. Nanotechnol. 10 1430

    [8]

    Mi Z, Chang Y L 2009 J. Nanophoton. 3 031602

    [9]

    Czaban J A, Thompson D A, Lapierre R R 2008 Nano Lett. 9 148

    [10]

    Patolsky F, Zheng G, Lieber C M 2006 Nanomedicine 151

    [11]

    Li J, Gilbertson A, Litvinenko K, Cohen L, Clowes S 2012 Appl. Phys. Lett. 101 152407

    [12]

    Dick K A, Deppert K, Mrtensson T, Mandl B, Samuelson L, Seifert W 2005 Nano Lett. 5 761

    [13]

    Park H D, Prokes S M, Cammarata R C 2005 Appl. Phys. Lett. 87 063110

    [14]

    Dayeh S A, Yu E T, Wang D 2007 Nano Lett. 7 2486

    [15]

    Scheffler M, Nadj-Perge S, Kouwenhoven L P, Borgstrm M T, Bakkers E P 2009 J. Appl. Phys. 106 124303

    [16]

    Ford A C, Ho J C, Chueh Y L, Tseng Y C, Fan Z, Guo J, Bokor J, Javey A 2008 Nano Lett. 9 360

    [17]

    Lassen B, Willatzen M, Melnik R, Lew Y V L 2006 J. Mater. Res. 21 2927

    [18]

    Sun W F, Zheng X X 2012 Acta Phys. Sin. 61 117103 (in Chinese) [孙伟峰, 郑晓霞 2012 61 117103]

    [19]

    Ning F, Tang L M, Zhang Y, Chen K Q 2013 J. Appl. Phys. 114 224304

    [20]

    Burke R A, Weng X, Kuo M W, Song Y W, Itsuno A M, Mayer T S, Durbin S M, Reeves R J, Redwing J M 2010 J. Electron. Mater. 39 355

    [21]

    Jeppsson M, Dick K A, Wagner J B, Caroff P, Deppert K, Samuelson L, Wernersson L E 2008 J. Cryst. Growth 310 4115

    [22]

    Jeppsson M, Dick K A, Nilsson H A, Skld N, Wagner J B, Caroff P, Wernersson L E 2008 J. Cryst. Growth 310 5119

    [23]

    Xu W, Chin A, Ye L, Ning C Z, Yu H 2012 J. Appl. Phys. 111 104515

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Ceperley D M, Alder B 1980 Phys. Rev. Lett. 45 566

    [26]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos J 1992 Rev. Mod. Phys. 64 1045

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [29]

    Zherebetskyy D, Wang L W 2014 Adv. Mater. Interfaces 1 1300131

    [30]

    Zhang Y, Tang L M, Ning F, Wang D, Chen K Q 2013 J. Phys. D: Appl. Phys. 46 175005

    [31]

    Deng H X, Li S S, Li J 2010 J. Phys. Chem. C 114 4841

    [32]

    Persson M P, Xu H Q 2002 Appl. Phys. Lett. 81 1309

    [33]

    Hong K H, Kim J, Lee S H, Shin J K 2008 Nano Lett. 8 1335

    [34]

    Xiang H J, Wei S H, Da Silva J L F, Li J 2008 Phys. Rev. B 78 193301

    [35]

    Xue H, Pan N, Li M, Wu Y, Wang X, Hou J G 2010 Nanotechnology 21 215701

    [36]

    Peng X, Tang F, Logan P 2011 J. Phys.: Condens. Matter 23 115502

    [37]

    Huang S, Yang L 2011 Appl. Phys. Lett. 98 093114

    [38]

    Peng X H, Ganti S, Alizadeh A, Sharma P, Kumar S K, Nayak S K 2006 Phys. Rev. B 74 035339

    [39]

    Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305

    [40]

    Wu Z, Neaton J B, Grossman J C 2009 Nano Lett. 9 2418

  • [1] Fang Wen-Yu, Zhang Peng-Cheng, Zhao Jun, Kang Wen-Bin. Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe. Acta Physica Sinica, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [2] Zhang Song-Ran, He Dai-Hua, Tu Hua-Yao, Sun yan, Kang Ting-Ting, Dai Ning, Chu Jun-Hao, Yu Guo-Lin. Magnetotransport properties and stress control of HgCdTe thin film. Acta Physica Sinica, 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [3] Di Lin-Jia, Dai Xian-Ying, Song Jian-Jun, Miao Dong-Ming, Zhao Tian-Long, Wu Shu-Jing, Hao Yue. Calculations of energy band structure and mobility in critical bandgap strained Ge1-xSnx based on Sn component and biaxial tensile stress modulation. Acta Physica Sinica, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [4] Liu Xiao-Wei, Zhang Ke-Ye. Effective-mass approach to controlling double-well dynamics of atomic Bose-Einstein condensates. Acta Physica Sinica, 2017, 66(16): 160301. doi: 10.7498/aps.66.160301
    [5] Xu Cong-Hui, Zhang Guo-Hua, Qian Zhi-Heng, Zhao Xue-Dan. Effective mass spectrum and dissipation power of granular material under the horizontal and vertical excitation. Acta Physica Sinica, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [6] Yu Tian, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Ma Wen-Bo. Dynamic effective mass and power dissipation of the granular material under vertical vibration. Acta Physica Sinica, 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [7] Xu Yue, Zhang Ze-Yu, Jin Zuan-Ming, Pan Qun-Feng, Lin Xian, Ma Guo-Hong, Cheng Zhen-Xiang. Transient photostriction and strain modulation in La, Nb-codoped BiFeO3 thin films. Acta Physica Sinica, 2014, 63(11): 117801. doi: 10.7498/aps.63.117801
    [8] Jin Feng, Zhang Zhen-Hua, Wang Cheng-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Acta Physica Sinica, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [9] Liu Zhu, Zhao Zhi-Fei, Guo Hao-Min, Wang Yu-Qi. Band structure and optical absorption in InAs/GaSb quantum well. Acta Physica Sinica, 2012, 61(21): 217303. doi: 10.7498/aps.61.217303
    [10] Sun Wei-Feng, Zheng Xiao-Xia. First-principles study of interface relaxation effects on interface structure, band structure and optical property of InAs/GaSb superlattices. Acta Physica Sinica, 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [11] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [12] Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng. Phonon band structure and electron-phonon interactions in Ga and Sb nanowires: a first-principles study. Acta Physica Sinica, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [13] Zhao Qi-Di, Zhang Zhen-Hua. Electronic transport properties of single-walled carbon nanotubes under a low bias. Acta Physica Sinica, 2010, 59(11): 8098-8103. doi: 10.7498/aps.59.8098
    [14] Wu Hui-Ting, Wang Hai-Long, Jiang Li-Ming. Effect of different effective mass and electric field on the electronic structure in GaN/AlxGa1-xN spherical quantum dot. Acta Physica Sinica, 2009, 58(1): 465-470. doi: 10.7498/aps.58.465
    [15] Wang Chuan-Dao. Electronic structure in GaAs/AlxGa1-xAs spherical quantum dots. Acta Physica Sinica, 2008, 57(2): 1091-1096. doi: 10.7498/aps.57.1091
    [16] Lu Guang-Cheng, Li Zeng-Hua, Zuo Wei, Luo Pei-Yan. Single nucleon potential and effective mass with ground state correlations in hot nuclear matter. Acta Physica Sinica, 2006, 55(1): 84-90. doi: 10.7498/aps.55.84
    [17] Yu Wei, Zhang Li, Wang Bao-Zhu, Lu Wan-Bing, Wang Li-Wei, Fu Guang-Sheng. Hydrogen bonding configurations and energy band structures of hydrogenated nanocrystalline silicon films. Acta Physica Sinica, 2006, 55(4): 1936-1941. doi: 10.7498/aps.55.1936
    [18] Eerdunchaolu, Li Shu-Shen, Xiao Jing-Lin. Effects of lattice vibration on the effective mass of quasi-two-dimensional strong-coupling polaron. Acta Physica Sinica, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [19] Cai Chang-Ying, Ren Zhong-Zhou, Ju Guo-Xing. Analytical solutions of the three-dimensional Schr?dinger equation with an exponentially changing effective mass. Acta Physica Sinica, 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [20] Duan He, Chen Xiao-Shuang, Sun Li-Zhong, Zhou Xiao-Hao, Lu Wei. First-principle calculations of structural properties and effective-mass of zinc-blende ZnTe and CdTe. Acta Physica Sinica, 2005, 54(11): 5293-5300. doi: 10.7498/aps.54.5293
Metrics
  • Abstract views:  6134
  • PDF Downloads:  195
  • Cited By: 0
Publishing process
  • Received Date:  16 June 2015
  • Accepted Date:  24 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map