-
Using first-principles calculations based on density functional theory and projector augmented wave method, we investigate the electronic structures of one-dimensional wurtzite (WZ) and zinc-blende (ZB) GaSb nanowires with different diameters along the [0001] and [111] directions, respectively. The results show that the band gap of the GaSb nanowire increases as the size of the nanowire decreases due to the quantum confinement, and the band structures of the GaSb nanowires display an indirect band structures feature when the diameter of the nanowire is smaller than 3.0 nm, whereas bulk GaSb has a direct gap. Owing to the different responses of the valence band maximum/conduction band minimum energies to strain, the band structures of GaSb nanowires experiences a noticeable indirect-to-direct transition when the nanowires are under the uniaxial strain. For example, an indirect-to-direct band gap transition in the band structure of [111] ZB GaSb nanowires can be realized by applying a uniaxial tensile strain, and this transition in the band structure of [0001] WZ GaSb nanowires can take place by applying both uniaxial tensile and compression strain when the diameter of the nanowire is about 2.0 nm. In addition, it is found that carrier effective mass is dependent on the diameter of the GaSb nanowire, therefore both the electron and hole effective mass values decrease as diameter increases. It is also found that the hole effective mass is smaller than the electron effective mass for GaSb nanowires with the same directions and sizes, indicating that the hole transportation is more prominent than the electron transportation.
-
Keywords:
- GaSb nanowires /
- effective mass /
- band structure /
- strain-modulation
[1] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P 2001 Science 292 1897
[2] Johnson J C, Yan H, Yang P, Saykally R J 2003 J. Phys. Chem. B 107 8816
[3] Favier F, Walter E C, Zach M P, Benter T, Penner R M 2001 Science 293 2227
[4] Wu F, Meng P W, Luo K, Liu Y F, Kan E J 2015 Chin. Phys. B 24 037504
[5] Vurgaftman I, Meyer J R, Ram Mohan L R 2001 J. Appl. Phys. 89 5815
[6] Gallo E M, Chen G, Currie M, Mcguckin T, Prete P, Lovergine N, Nabet B, Spanier J E 2011 Appl. Phys. Lett. 98 241113
[7] Soci C, Zhang A, Bao X Y, Kim H, Lo Y, Wang D 2010 J. Nanosci. Nanotechnol. 10 1430
[8] Mi Z, Chang Y L 2009 J. Nanophoton. 3 031602
[9] Czaban J A, Thompson D A, Lapierre R R 2008 Nano Lett. 9 148
[10] Patolsky F, Zheng G, Lieber C M 2006 Nanomedicine 151
[11] Li J, Gilbertson A, Litvinenko K, Cohen L, Clowes S 2012 Appl. Phys. Lett. 101 152407
[12] Dick K A, Deppert K, Mrtensson T, Mandl B, Samuelson L, Seifert W 2005 Nano Lett. 5 761
[13] Park H D, Prokes S M, Cammarata R C 2005 Appl. Phys. Lett. 87 063110
[14] Dayeh S A, Yu E T, Wang D 2007 Nano Lett. 7 2486
[15] Scheffler M, Nadj-Perge S, Kouwenhoven L P, Borgstrm M T, Bakkers E P 2009 J. Appl. Phys. 106 124303
[16] Ford A C, Ho J C, Chueh Y L, Tseng Y C, Fan Z, Guo J, Bokor J, Javey A 2008 Nano Lett. 9 360
[17] Lassen B, Willatzen M, Melnik R, Lew Y V L 2006 J. Mater. Res. 21 2927
[18] Sun W F, Zheng X X 2012 Acta Phys. Sin. 61 117103 (in Chinese) [孙伟峰, 郑晓霞 2012 61 117103]
[19] Ning F, Tang L M, Zhang Y, Chen K Q 2013 J. Appl. Phys. 114 224304
[20] Burke R A, Weng X, Kuo M W, Song Y W, Itsuno A M, Mayer T S, Durbin S M, Reeves R J, Redwing J M 2010 J. Electron. Mater. 39 355
[21] Jeppsson M, Dick K A, Wagner J B, Caroff P, Deppert K, Samuelson L, Wernersson L E 2008 J. Cryst. Growth 310 4115
[22] Jeppsson M, Dick K A, Nilsson H A, Skld N, Wagner J B, Caroff P, Wernersson L E 2008 J. Cryst. Growth 310 5119
[23] Xu W, Chin A, Ye L, Ning C Z, Yu H 2012 J. Appl. Phys. 111 104515
[24] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[25] Ceperley D M, Alder B 1980 Phys. Rev. Lett. 45 566
[26] Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos J 1992 Rev. Mod. Phys. 64 1045
[27] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[28] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[29] Zherebetskyy D, Wang L W 2014 Adv. Mater. Interfaces 1 1300131
[30] Zhang Y, Tang L M, Ning F, Wang D, Chen K Q 2013 J. Phys. D: Appl. Phys. 46 175005
[31] Deng H X, Li S S, Li J 2010 J. Phys. Chem. C 114 4841
[32] Persson M P, Xu H Q 2002 Appl. Phys. Lett. 81 1309
[33] Hong K H, Kim J, Lee S H, Shin J K 2008 Nano Lett. 8 1335
[34] Xiang H J, Wei S H, Da Silva J L F, Li J 2008 Phys. Rev. B 78 193301
[35] Xue H, Pan N, Li M, Wu Y, Wang X, Hou J G 2010 Nanotechnology 21 215701
[36] Peng X, Tang F, Logan P 2011 J. Phys.: Condens. Matter 23 115502
[37] Huang S, Yang L 2011 Appl. Phys. Lett. 98 093114
[38] Peng X H, Ganti S, Alizadeh A, Sharma P, Kumar S K, Nayak S K 2006 Phys. Rev. B 74 035339
[39] Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305
[40] Wu Z, Neaton J B, Grossman J C 2009 Nano Lett. 9 2418
-
[1] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P 2001 Science 292 1897
[2] Johnson J C, Yan H, Yang P, Saykally R J 2003 J. Phys. Chem. B 107 8816
[3] Favier F, Walter E C, Zach M P, Benter T, Penner R M 2001 Science 293 2227
[4] Wu F, Meng P W, Luo K, Liu Y F, Kan E J 2015 Chin. Phys. B 24 037504
[5] Vurgaftman I, Meyer J R, Ram Mohan L R 2001 J. Appl. Phys. 89 5815
[6] Gallo E M, Chen G, Currie M, Mcguckin T, Prete P, Lovergine N, Nabet B, Spanier J E 2011 Appl. Phys. Lett. 98 241113
[7] Soci C, Zhang A, Bao X Y, Kim H, Lo Y, Wang D 2010 J. Nanosci. Nanotechnol. 10 1430
[8] Mi Z, Chang Y L 2009 J. Nanophoton. 3 031602
[9] Czaban J A, Thompson D A, Lapierre R R 2008 Nano Lett. 9 148
[10] Patolsky F, Zheng G, Lieber C M 2006 Nanomedicine 151
[11] Li J, Gilbertson A, Litvinenko K, Cohen L, Clowes S 2012 Appl. Phys. Lett. 101 152407
[12] Dick K A, Deppert K, Mrtensson T, Mandl B, Samuelson L, Seifert W 2005 Nano Lett. 5 761
[13] Park H D, Prokes S M, Cammarata R C 2005 Appl. Phys. Lett. 87 063110
[14] Dayeh S A, Yu E T, Wang D 2007 Nano Lett. 7 2486
[15] Scheffler M, Nadj-Perge S, Kouwenhoven L P, Borgstrm M T, Bakkers E P 2009 J. Appl. Phys. 106 124303
[16] Ford A C, Ho J C, Chueh Y L, Tseng Y C, Fan Z, Guo J, Bokor J, Javey A 2008 Nano Lett. 9 360
[17] Lassen B, Willatzen M, Melnik R, Lew Y V L 2006 J. Mater. Res. 21 2927
[18] Sun W F, Zheng X X 2012 Acta Phys. Sin. 61 117103 (in Chinese) [孙伟峰, 郑晓霞 2012 61 117103]
[19] Ning F, Tang L M, Zhang Y, Chen K Q 2013 J. Appl. Phys. 114 224304
[20] Burke R A, Weng X, Kuo M W, Song Y W, Itsuno A M, Mayer T S, Durbin S M, Reeves R J, Redwing J M 2010 J. Electron. Mater. 39 355
[21] Jeppsson M, Dick K A, Wagner J B, Caroff P, Deppert K, Samuelson L, Wernersson L E 2008 J. Cryst. Growth 310 4115
[22] Jeppsson M, Dick K A, Nilsson H A, Skld N, Wagner J B, Caroff P, Wernersson L E 2008 J. Cryst. Growth 310 5119
[23] Xu W, Chin A, Ye L, Ning C Z, Yu H 2012 J. Appl. Phys. 111 104515
[24] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[25] Ceperley D M, Alder B 1980 Phys. Rev. Lett. 45 566
[26] Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos J 1992 Rev. Mod. Phys. 64 1045
[27] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[28] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[29] Zherebetskyy D, Wang L W 2014 Adv. Mater. Interfaces 1 1300131
[30] Zhang Y, Tang L M, Ning F, Wang D, Chen K Q 2013 J. Phys. D: Appl. Phys. 46 175005
[31] Deng H X, Li S S, Li J 2010 J. Phys. Chem. C 114 4841
[32] Persson M P, Xu H Q 2002 Appl. Phys. Lett. 81 1309
[33] Hong K H, Kim J, Lee S H, Shin J K 2008 Nano Lett. 8 1335
[34] Xiang H J, Wei S H, Da Silva J L F, Li J 2008 Phys. Rev. B 78 193301
[35] Xue H, Pan N, Li M, Wu Y, Wang X, Hou J G 2010 Nanotechnology 21 215701
[36] Peng X, Tang F, Logan P 2011 J. Phys.: Condens. Matter 23 115502
[37] Huang S, Yang L 2011 Appl. Phys. Lett. 98 093114
[38] Peng X H, Ganti S, Alizadeh A, Sharma P, Kumar S K, Nayak S K 2006 Phys. Rev. B 74 035339
[39] Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305
[40] Wu Z, Neaton J B, Grossman J C 2009 Nano Lett. 9 2418
Catalog
Metrics
- Abstract views: 6134
- PDF Downloads: 195
- Cited By: 0