-
非晶氧化镓(a-GaOx)具有较宽的带隙、大击穿场强、高可见光透过率、对特定波长的紫外光敏感、制备温度低、工艺较为简单、衬底适用范围广及易获得高质量薄膜等特点,一般用于制备透明电子器件、紫外探测器,大功率器件以及气体传感器。目前对于a-GaOx的研究较少且集中于氧镓化学计量比(O/Ga比)小于等于1.5的薄膜。薄膜中的O/Ga比的变化会影响其化学键的形成,并对能带结构产生较大影响,本文通过控制合适的工艺参数,制备了氧镓比从3.89到3.39呈梯度变化的薄膜,并对其能带结构和MS界面电子输运机制进行研究,发现其光学带隙和局域态浓度逐渐增大,其MS界面IV特性从肖特基整流特性逐渐向欧姆特性转变。结果表明,氧原子比例增大会使其价带顶升高,并且过量的氧原子会与镓原子形成Ga2O,使其局域态浓度增大,致使其导带底降低以及施主浓度增大,从而改变MS界面的电子输运机制。Amorphous gallium oxide (a-GaOx) exhibits excellent electrical conductivity, a wide bandgap, high breakdown field strength, high visible light transmittance, sensitivity to specific ultraviolet wavelengths, low preparation temperatures, relatively simple processing, wide substrate applicability, and ease of obtaining high-quality thin films. These attributes make it a suitable candidate for applications in transparent electronic devices, ultraviolet detectors, high-power devices, and gas sensors. Presently, research on a-GaOx remains limited, focusing primarily on films with an O/Ga ratio less than or equal to 1.5. Increasing the concentration of oxygen vacancies to enhance the conductivity of the material often leads to a reduction in its bandgap, which is undesirable for high-power applications. Variations in O/Ga in the films can impact the formation of chemical bonds and significantly influence the band structure. In this study, five groups of a-GaOx thin films with a high oxygen-to-gallium ratio were successfully fabricated by increasing the gas flow rate at low sputtering power. The elemental composition of the films was analyzed using Energy Dispersive Spectroscopy (EDS), revealing a gradual decrease in the O/Ga ratio from 3.89 to 3.39. Phase analysis using X-ray Diffraction (XRD) confirmed the amorphous nature of the films. Optical properties were characterized using an Ultraviolet-Visible Spectrophotometer (UV-Vis), indicating a gradual increase in the optical bandgap and the density of localized states. X-ray Photoelectron Spectroscopy (XPS) was employed to analyze the elemental composition, chemical states, and valence band structure of the films, showing a gradual decrease in the valence band maximum and an increasing content of Ga2O within the material. Subsequently, Au/a-Ga2Ox/Ti/Au Schottky devices were fabricated under the same processing conditions. The I-V characteristics of these devices were measured using a Keithley 4200, revealing changes in the electron transport mechanism at the MS interface, with a gradual increase in electron affinity calculated. C-V characteristics were measured using a Keithley 590, and the donor concentration (density of localized states) at the interface was calculated to gradually increase. In summary, by controlling appropriate process parameters, it is possible to improve the conductivity of electronic devices while increasing the bandgap of a-GaOx, which holds significance for high-power applications.
-
Keywords:
- Amorphous Gallium Oxide /
- O/Ga Ratio /
- Band Structure /
- Electron Transport Mechanism
-
[1] Wang Y, Su J, Lin Z, Zhang J, Chang J, Hao Y 2022 J. Mater. Chem. C 10 13395
[2] Wang Y, Xue Y, Su J, Lin Z, Zhang J, Chang J, Hao Y 2022 Mater. Today Adv. 16 100324
[3] Peelaers H 2015 physica status solidi (a) 252 828
[4] Segura A, Artús L, Cuscó R, Goldhahn R, Feneberg M 2017 Phys. Rev. Mater. 1 024604
[5] Vu T K O, Lee D U, Kim E K 2019 J. Alloys Compd. 806 874
[6] Feng X, Li Z, Mi W, Luo Y, Ma J 2015 Mater. Sci. Semicond. Process. 34 52
[7] He W, Wang Z X, Zheng T, Wang L Y, Zheng S W 2021 J. Electron. Mater. 50 3856
[8] Zhang Y, Yan J, Li Q, Qu C, Zhang L, Xie W 2011 Materials Science and Engineering:B 176 846
[9] Tak B, Dewan S, Goyal A, Pathak R, Gupta V, Kapoor A, Nagarajan S, Singh R 2019 Appl. Surf. Sci. 465 973
[10] Kim B G 2021 J. Korean Phys. Soc 79 946
[11] Cui S J, Mei Z X, Zhang Y H, Liang H L, Du X L 2017 Adv. Opt. Mater. 5 1700454 1700454
[12] Zhang F, Li H, Cui Y-T, Li G-L, Guo Q 2018 AIP Adv. 8 045112
[13] Zhu W, Xiong L, Si J, Hu Z, Gao X, Long L, Li T, Wan R, Zhang L, Wang L 2020 Semicond. Sci. Technol. 35 055037
[14] An Y, Guo D, Li S, Wu Z, Huang Y, Li P, Li L, Tang W 2016 J. Phys. D:Appl. Phys. 49 285111
[15] Zhang Y-F, Chen X-H, Xu Y, Ren F-F, Gu S-L, Zhang R, Zheng Y-D, Ye J-D 2019 Chin. Phys. B 28 028501
[16] Akiyama T, Kawamura T, Ito T 2023 Appl. Phys. Express 16 015508
[17] Li W, Wan J, Tu Z, Li H, Wu H, Liu C 2022 Ceram. Int. 48 3185
[18] Heinemann M D, Berry J, Teeter G, Unold T, Ginley D 2016 Appl. Phys. Lett. 108 022107
[19] Zhang J, Yuan Y, Yang X, Zheng Y, Zhang H, Zeng G 2023 J. Phys. D:Appl. Phys. 56 085103
[20] Ding J, Liu Y, Gu X, Zhang L, Zhang X, Chen X, Liu W, Cai Y, Guo S, Sun C 2024 Physica B 682 415888
[21] Lyle L A, Back T C, Bowers C T, Green A J, Chabak K D, Dorsey D L, Heller E R, Porter L M 2021 APL Mater. 9 061104
[22] Gopalan P, Knight S, Chanana A, Stokey M, Ranga P, Scarpulla M A, Krishnamoorthy S, Darakchieva V, Galazka Z, Irmscher K 2020 Appl. Phys. Lett. 117 252103
计量
- 文章访问数: 46
- PDF下载量: 0
- 被引次数: 0