-
The laue bent crystal is the most effective optical element of focusing, collimating and monochromating of high flux density hard X-rays (above 30 keV) from the insertion device radiation, because of reducing the high heat load effectively. So the study of the focusing optical properties is important for developing high performance and stability laue bent crystal monochromator. We give a systematic research of the focusing properties of laue bent crystal by X-ray trace program self-developed, analyze the effects of the mode of incident beam and crystal parameter on focusing spot size, focal length, diffracted beam divergence, etc., and obtain the following results: the higher the diffracted energy, the smaller the spot size is and the spot size tends to be a constant; the smaller the bend radius of crystal, the smaller the spot size is, and the spot size reaches a minimum when the bend radius is a threshold, then as the bend radius decreases, the spot size becomes larger because of aberration; the spot size is linearly directly proportional to the thickness of crystal. For the divergence of diffracted beam, it becomes smaller as the diffracted energy is high, and tends to be a constant; it is linearly directly proportional to the curvature of bent crystal. Also we obtain a reasonable range of bent crystal parameters from the study by ray-tracing.
-
Keywords:
- X-ray optics /
- Laue bent crystal /
- focusing properties /
- ray tracing
[1] Hu W, Xie H L, Du G H, Xiao T Q 2007 High Energy Phys. Nucl. Phys. 31 597 (in Chinese) [胡雯, 谢红兰, 杜国浩, 肖体乔 2007 高能物理与核物理 31 597]
[2] Mocella V, Guigay J P, Hrdyprime J, Ferrero C, Hoszowska J 2004 J. Appl. Cryst. 37 941
[3] Zhong Z, Chapman D, Thomlinson W, Arfelli F, Menk R 1997 Nucl. Instru. Methods A399 489
[4] Takahashi Y, Uruga T, Tanida H, Terada Y, Nakai S, Shimizu H 2006 Anal. Chim. Acta 558 332
[5] Schulze C, Chapman D 1994 Rev. Sci. Instrum. 66 2220
[6] Suortti P, Thomlinson W, Chapman D, Gmür N, Siddons D P, Schulze C 1993 Nucl. Instrum. Methods A336 304
[7] Schulze C, Lienert U, Hanfland M, Lorenzen M, Zontone F 1998 J. Synchrotron Rad. 5 77
[8] Nesterets Y I, Wilkins S W 2008 J. Appl. Cryst. 41 237
[9] Chen C, Tong Y J, Ren Y Q, Zhou G Z, Xie H L, Xiao T Q 2011 Acta Opt. Sin. 31 (in Chinese) [陈灿, 佟亚军, 任玉琦, 周光照, 谢红兰, 肖体乔 2011 光学学报 31 292]
[10] Erola E, Etelaniemi V, Suortti P 1990 J. Appl. Cryst. 23 35
[11] Suortti P, Thomlinson W 1988 Nucl. Instrum. Methods A269 639
[12] Suortti P 1992 Rev. Sci. Instrum. 636 942
[13] Sparks C J, Ice G E, Wong J 1982 Nucl. Instrum. Methods 194 73
-
[1] Hu W, Xie H L, Du G H, Xiao T Q 2007 High Energy Phys. Nucl. Phys. 31 597 (in Chinese) [胡雯, 谢红兰, 杜国浩, 肖体乔 2007 高能物理与核物理 31 597]
[2] Mocella V, Guigay J P, Hrdyprime J, Ferrero C, Hoszowska J 2004 J. Appl. Cryst. 37 941
[3] Zhong Z, Chapman D, Thomlinson W, Arfelli F, Menk R 1997 Nucl. Instru. Methods A399 489
[4] Takahashi Y, Uruga T, Tanida H, Terada Y, Nakai S, Shimizu H 2006 Anal. Chim. Acta 558 332
[5] Schulze C, Chapman D 1994 Rev. Sci. Instrum. 66 2220
[6] Suortti P, Thomlinson W, Chapman D, Gmür N, Siddons D P, Schulze C 1993 Nucl. Instrum. Methods A336 304
[7] Schulze C, Lienert U, Hanfland M, Lorenzen M, Zontone F 1998 J. Synchrotron Rad. 5 77
[8] Nesterets Y I, Wilkins S W 2008 J. Appl. Cryst. 41 237
[9] Chen C, Tong Y J, Ren Y Q, Zhou G Z, Xie H L, Xiao T Q 2011 Acta Opt. Sin. 31 (in Chinese) [陈灿, 佟亚军, 任玉琦, 周光照, 谢红兰, 肖体乔 2011 光学学报 31 292]
[10] Erola E, Etelaniemi V, Suortti P 1990 J. Appl. Cryst. 23 35
[11] Suortti P, Thomlinson W 1988 Nucl. Instrum. Methods A269 639
[12] Suortti P 1992 Rev. Sci. Instrum. 636 942
[13] Sparks C J, Ice G E, Wong J 1982 Nucl. Instrum. Methods 194 73
Catalog
Metrics
- Abstract views: 7671
- PDF Downloads: 679
- Cited By: 0