-
The anti-Stokes frequency conversion based on four-wave mixing (FWM) has been widely used to generate short-wavelength radiation for high resolution imaging, direct excitation of electronic molecular transitions, and so on. For achieving more effective anti-Stokes conversion, we use the Ti: sapphire laser with a central wavelength of 810 nm and a pulse width of 120 fs as a pump source, and the degenerated FWMs of the higher mode and the fundamental mode are achieved respectively in 0.5 m long and 3 m long photonic crystal fibers (PCFs) with a zero dispersion wavelength of fundamental mode around 820nm in our experiment. The anti-Stokes signals around 560nm are generated efficiently at the fundamental phase matching. The maximum power ratios of anti-Stokes signal at 562 nm to the residual pump component and the Stokes signal are above 33:1 and 25:1, respectively. The maximum conversion efficiencies are achieved to be up to 48% and 34% in theory and experiment, respectively. And then the variation laws of the phase matching and the output spectrum with pump power, wavelength and the fiber length are obtained and the discrepancy between theoretical and experimental results is analyzed. Moreover, the effects of more factors on experimental results are discussed.
-
Keywords:
- photonic crystal fiber (PCF) /
- anti-Stokes signal /
- four-wave mixing
[1] Knight J C 2003 Nature 424 847
[2] Russell P St J 2003 Science 299 358
[3] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[4] Sang X Z, Chu P K, Yu C X 2005 Opt.Quantum Electron. 37 965
[5] Zheltikov A M 2006 J. Opt. A: Pure Appl. Opt. 8 S47
[6] Reeves WH, Skryabin D V, Biancalana F, Knight J C, Russell P S, Omenetto F G, Efimov A, Taylor A J 2003 Nature 424 511
[7] Finazzi V, Monro T M, Richardson D J 2003 IEEE Photon. Technol. Lett. 15 1246
[8] Asimakis S, Petropoulos P, Poletti F, Leong J Y Y, Moore R C, Frampton K E, Feng X, Loh W H, Richardson D J 2007 Opt. Exp. 15 596
[9] Provino L, Dudley J M, Maillotte H, Grossard N, Windeler R S, Eggleton B J 2001 Electron. Lett. 37 558
[10] Hu M L, Wang Q Y, Li Y F, Wang Z, Chai L, Zhang W L 2005 Acta Phys. Sin. 54 4411 (in Chinese) [胡明列, 王清月, 栗岩峰, 王专, 柴路, 张伟力 2005 54 4411]
[11] Ji L L, Lu P X, Chen W, Dai N L, Zhang J H, Jiang Z W, Li J Y, Li W 2008 Acta Phys. Sin. 57 5973 (in Chinese) [季玲玲, 陆陪祥, 陈伟, 戴能利, 张继皇, 蒋作文, 李进延, 李伟 2008 57 5973]
[12] Wang W, Gao F, Hou L T, Zhou G Y, 2008 Chin. Phys. Lett. 25 2055
[13] Yuan J H, Sang X Z, Yu C X, Li S G, Zhou G Y, Hou L T 2010 IEEE J. Quantum Electron. 46 728
[14] Ji L L, Chen W, Cao Y C, Yang Z Y, Lu P X 2009 Acta Phys. Sin. 58 5462 (in Chinese) [季玲玲, 陈伟, 曹迎春, 杨振宇, 陆陪祥 2009 58 5462]
[15] Stark S P, Biancalana F, Podlipensky A, Russell P S J 2011 Phys. Rev. A 83 23808
[16] Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J, Coen S 2002 J. Opt. Soc. Am. B 19 765
[17] Zewail A H 1988 Science 242 1645
[18] Hadley G R 1998 J. Lightwave Technol. 16 134
[19] Agrawal G P 1986 Nonlinear Fiber Optics. 3rd ed (California: San Diego) p280
[20] Husakou A V, Herrmann J 2003 Appl. Phys. Lett. 83 3867
[21] Abedin K S, Gopinath J T, Ippen E P, Kerbage C E,Windeler R S, Eggleton B J 2002 Appl. Phys. Lett. 81 1384
[22] Xu Y Q, Murdoch S G, Leonhardt R, Harvey J D 2008 Opt. Lett. 33 1351
[23] Hu M L, Wang C Y, Song Y J, Li Y F, Chai L 2006 Opt. Exp. 14 1189
-
[1] Knight J C 2003 Nature 424 847
[2] Russell P St J 2003 Science 299 358
[3] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[4] Sang X Z, Chu P K, Yu C X 2005 Opt.Quantum Electron. 37 965
[5] Zheltikov A M 2006 J. Opt. A: Pure Appl. Opt. 8 S47
[6] Reeves WH, Skryabin D V, Biancalana F, Knight J C, Russell P S, Omenetto F G, Efimov A, Taylor A J 2003 Nature 424 511
[7] Finazzi V, Monro T M, Richardson D J 2003 IEEE Photon. Technol. Lett. 15 1246
[8] Asimakis S, Petropoulos P, Poletti F, Leong J Y Y, Moore R C, Frampton K E, Feng X, Loh W H, Richardson D J 2007 Opt. Exp. 15 596
[9] Provino L, Dudley J M, Maillotte H, Grossard N, Windeler R S, Eggleton B J 2001 Electron. Lett. 37 558
[10] Hu M L, Wang Q Y, Li Y F, Wang Z, Chai L, Zhang W L 2005 Acta Phys. Sin. 54 4411 (in Chinese) [胡明列, 王清月, 栗岩峰, 王专, 柴路, 张伟力 2005 54 4411]
[11] Ji L L, Lu P X, Chen W, Dai N L, Zhang J H, Jiang Z W, Li J Y, Li W 2008 Acta Phys. Sin. 57 5973 (in Chinese) [季玲玲, 陆陪祥, 陈伟, 戴能利, 张继皇, 蒋作文, 李进延, 李伟 2008 57 5973]
[12] Wang W, Gao F, Hou L T, Zhou G Y, 2008 Chin. Phys. Lett. 25 2055
[13] Yuan J H, Sang X Z, Yu C X, Li S G, Zhou G Y, Hou L T 2010 IEEE J. Quantum Electron. 46 728
[14] Ji L L, Chen W, Cao Y C, Yang Z Y, Lu P X 2009 Acta Phys. Sin. 58 5462 (in Chinese) [季玲玲, 陈伟, 曹迎春, 杨振宇, 陆陪祥 2009 58 5462]
[15] Stark S P, Biancalana F, Podlipensky A, Russell P S J 2011 Phys. Rev. A 83 23808
[16] Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J, Coen S 2002 J. Opt. Soc. Am. B 19 765
[17] Zewail A H 1988 Science 242 1645
[18] Hadley G R 1998 J. Lightwave Technol. 16 134
[19] Agrawal G P 1986 Nonlinear Fiber Optics. 3rd ed (California: San Diego) p280
[20] Husakou A V, Herrmann J 2003 Appl. Phys. Lett. 83 3867
[21] Abedin K S, Gopinath J T, Ippen E P, Kerbage C E,Windeler R S, Eggleton B J 2002 Appl. Phys. Lett. 81 1384
[22] Xu Y Q, Murdoch S G, Leonhardt R, Harvey J D 2008 Opt. Lett. 33 1351
[23] Hu M L, Wang C Y, Song Y J, Li Y F, Chai L 2006 Opt. Exp. 14 1189
Catalog
Metrics
- Abstract views: 7614
- PDF Downloads: 737
- Cited By: 0