-
The influence of gate voltage VG on gate induced drain leakage (GIDL) current is studied in LDD nMOSFET with a gate oxide of 1.4nm and a channel length of 100nm. It is found that the split phenomena of ln(Id/(VDG-1.2))-1/(VDG-1.2) curves under different VG values occurs, which are different from the large MOSFET. Through comparing varieties of ln(Id/(VDG-1.2)) of different VG values, the mechanism of this split phenomenon is obtained. This is ascribed to the change of the hole-tunneling part of GIDL current under different VG values. The absolute value of ln(Id/(VDG-1.2)) curve slope decrease with |VG| value decreasing . It is further found that the values of slope c and intercept d of ln(Id/(VDG-1.2)) curves are linear with VG and the slopes of c and d are 3.09 and -0.77, respectively. The values of c and d quantificationally show the influence of VG on the GIDL current in an ultra-thin ultra-short MOSFET. On the basis of these results, a new GIDL current model including VG is proposed.
-
Keywords:
- GIDL /
- band-to-band tunneling /
- CMOS /
- LDD nMOSFET
[1] Choi Y K, Ha Daewon, King T J, Bokor J 2003 Jan. J. Appl. Phys. 42 2073
[2] Ma X H, Hao Y R, Gao H X, Chen H F, Hao Y 2009 Appl. Phys. Lett. 95 152107
[3] Chen H F, Cao Y, Ma X H, 2007 Acta Phys. Sin. 56 1662(in Chinese) [陈海峰, 郝跃, 马晓华 2007 56 1662]
[4] Chang M C, Lin J P, Lai C S, Chang R D, Shih S N, Wang M Y, Lee P 2005 IEEE Trans. Electron Devices 52 484
[5] Liu H X, Zheng X F, Hao Y 2005 Acta Phys. Sin. 54 5867(in Chinese)[刘红侠, 郑雪峰, 郝跃 2005 54 5867]
[6] Fossum J G, Kim K, Chong Y 1999 IEEE Trans. Electron Devices 46 2195
[7] Larcher L, Pavan P, Eitan B 2004 IEEE Trans. Electron Devices 51 1593
[8] Kumar P B, Sharma R, Nair P R, Ma S 2007 IEEE Trans. Electron Devices 54 98
[9] Han JW, Ryu SW, Choi S J, Choi Y K 2009 IEEE Electron Device Lett. 30 189
[10] Choi S J, Han J , Kim C, Kim S, Choi Y 2009 IEEE Trans. Electron Devices 56 3228
[11] Chen J, Chen T Y, Chen I C, Ko P, Hu C 1987 IEEE Electron Device Lett. 8 515
[12] Lo G Q, Joshi A B, Kwong D L 1991 IEEE Electron Device Lett. 12 6
[13] Semenov O, Pradzynski A, Sachdev M 2002 IEEE Trans. Semiconductor Manufacturing 15 11
[14] Wang T H, Chang T E, Chiang L P, Wang C H, Zous N K, Huang C 1998 IEEE Trans. Electron Devices 45 1511
[15] Guo J C, Liu Y C. Chou M H, Wang M T, Shone F 1998 IEEE Trans. Electron Devices 45 1518
[16] Chan T Y, Chen J, KO P K, Hu C 1987 IEDM Tech. Dig. 718
[17] Wann H , Ko K P, Hu C 1992 IEDM Tech. Dig. 150
-
[1] Choi Y K, Ha Daewon, King T J, Bokor J 2003 Jan. J. Appl. Phys. 42 2073
[2] Ma X H, Hao Y R, Gao H X, Chen H F, Hao Y 2009 Appl. Phys. Lett. 95 152107
[3] Chen H F, Cao Y, Ma X H, 2007 Acta Phys. Sin. 56 1662(in Chinese) [陈海峰, 郝跃, 马晓华 2007 56 1662]
[4] Chang M C, Lin J P, Lai C S, Chang R D, Shih S N, Wang M Y, Lee P 2005 IEEE Trans. Electron Devices 52 484
[5] Liu H X, Zheng X F, Hao Y 2005 Acta Phys. Sin. 54 5867(in Chinese)[刘红侠, 郑雪峰, 郝跃 2005 54 5867]
[6] Fossum J G, Kim K, Chong Y 1999 IEEE Trans. Electron Devices 46 2195
[7] Larcher L, Pavan P, Eitan B 2004 IEEE Trans. Electron Devices 51 1593
[8] Kumar P B, Sharma R, Nair P R, Ma S 2007 IEEE Trans. Electron Devices 54 98
[9] Han JW, Ryu SW, Choi S J, Choi Y K 2009 IEEE Electron Device Lett. 30 189
[10] Choi S J, Han J , Kim C, Kim S, Choi Y 2009 IEEE Trans. Electron Devices 56 3228
[11] Chen J, Chen T Y, Chen I C, Ko P, Hu C 1987 IEEE Electron Device Lett. 8 515
[12] Lo G Q, Joshi A B, Kwong D L 1991 IEEE Electron Device Lett. 12 6
[13] Semenov O, Pradzynski A, Sachdev M 2002 IEEE Trans. Semiconductor Manufacturing 15 11
[14] Wang T H, Chang T E, Chiang L P, Wang C H, Zous N K, Huang C 1998 IEEE Trans. Electron Devices 45 1511
[15] Guo J C, Liu Y C. Chou M H, Wang M T, Shone F 1998 IEEE Trans. Electron Devices 45 1518
[16] Chan T Y, Chen J, KO P K, Hu C 1987 IEDM Tech. Dig. 718
[17] Wann H , Ko K P, Hu C 1992 IEDM Tech. Dig. 150
Catalog
Metrics
- Abstract views: 8339
- PDF Downloads: 585
- Cited By: 0