-
In a double-gap coupled cavity of klystrons, the electrons exchange energy with the electric field in each gap through beam-wave interaction process, and different beam-loading effects take place in each gap. However in this case the traditional beam-loading model does not hold true. To solve this problem, we present a novel model according to the space-charge-wave theory to calculate the beam-loading conductance in each gap of the coupled-cavity, and also derive the formulations. Moreover, we perform a simulation study using a three-dimensional particle-in-cell code. The results obtained by the model show good agreement with the simulation results. In comparison with the traditional model, the new model can be used to calculate the beam-loading conductances in diffident regions of the coupled-cavity, and then it can be used to study the beam-wave interactions in the gaps and analyze the mode stability in the coupled-cavity in a high accuracy.
-
Keywords:
- double-gap coupled cavity /
- space-charge-wave theory /
- beam-loading conductance /
- particle-in-cell simulation
[1] Chodorow M, Wessel-Berg T 1961 IEEE Trans. Electron. Dev. 8 44
[2] Wessel-Berg T 1957 A General Theory of Klystrons with Arbitrary Extended Interaction Fields (California: Microwave Laboratory of Stanford University) p376
[3] [4] [5] Zhang K C, Wu Z H, Liu S G 2008 Chin. Phys. B 17 3402
[6] [7] Lin F M, Ding Y G 2004 Vac. Electron. Techn. 2 10
[8] Quan Y M, Ding Y G, Wang S Z 2008 IEEE Trans. Plasma Sci. 37 30
[9] [10] Quan Y M 2008 Ph. D. Dissertation (Beijing: Institute of Electronics, Chinese Academy of Sciences) (in Chinese) [全亚民 2008 博士学位论文 (北京:中国科学院电子学研究所)]
[11] [12] Hsu H L 2006 Ph. D. Dissertation (Davis: University of California Davis)
[13] [14] Craig E 1967 IEEE Trans. Electron. Dev. 14 273
[15] [16] Kowalczyk R, Lau Y Y 2005 IEEE Trans. Electron. Dev. 52 2087
[17] [18] [19] Wilsen B C, Lau Y Y 2002 IEEE Trans. Plasma Sci. 30 1160
[20] Cui J, Luo J R, Zhu M, Guo W 2011 Acta Phys. Sin. 59 7383 (in Chinese) [崔 健、罗积润、朱 敏、郭 炜 2011 59 7383]
[21] [22] Zhao D, Ding Y G, Wang Y 2007 Acta Phys. Sin. 56 3324 (in Chinese) [赵 鼎、丁耀根、王 勇 2007 56 3324]
[23] [24] Yonezawa H, Okazaki Y 1984 A One-Dimension Disk Model Simulation for Klystron Design (California:SLAC of Stanford University)p5
[25] [26] Cui J, Luo J R, Zhu M, Guo W 2011 Acta Phys. Sin. 60 061101(in Chinese) [崔 健、罗积润、朱 敏、郭 炜 2011 60 061101]
[27] [28] Xie J L, Zhao Y X 1966 Bunching Theory of Klystrons (Beijing: Science Press) pp88, 94 (in Chinese) [谢家麟、赵永翔 1966 速调管群聚理论 (北京:科学出版社) 第88,94页]
[29] [30] [31] Pierce J R, Shepherd W G 1947 J. Bell. Syst. Techn. 26 663
[32] Ding Y G 2008 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) pp42, 64, 70 (in Chinese) [丁耀根2008大功率速调管的理论与计算模拟 (北京:国防工业出版社) 第42,64,70页]
[33] [34] Dong Y H, Ding Y G, Xiao L 2005 Acta Phys. Sin. 54 5629 (in Chinese) [董玉和、丁耀根、肖 刘 2005 54 5629]
[35] [36] Gong H R, Gong Y B, Wei Y Y, Tang C J, Xue D H, Wang W X 2006 Acta Phys. Sin. 55 5368 (in Chinese) [巩华荣、宫玉彬、魏彦玉、唐昌建、薛东海、王文祥 2006 55 5368]
[37] [38] [39] Hu Y L, Yang Z H, Li J Q, Li B, Gao P, Jin X L 2009 Acta Phys. Sin. 58 6665 (in Chinese) [胡玉禄、杨中海、李建清、李 斌、高 鹏、金晓林 2009 58 6665]
[40] Chodorow M, Kulke B 1966 IEEE Trans. Electron. Dev.13 439
[41] -
[1] Chodorow M, Wessel-Berg T 1961 IEEE Trans. Electron. Dev. 8 44
[2] Wessel-Berg T 1957 A General Theory of Klystrons with Arbitrary Extended Interaction Fields (California: Microwave Laboratory of Stanford University) p376
[3] [4] [5] Zhang K C, Wu Z H, Liu S G 2008 Chin. Phys. B 17 3402
[6] [7] Lin F M, Ding Y G 2004 Vac. Electron. Techn. 2 10
[8] Quan Y M, Ding Y G, Wang S Z 2008 IEEE Trans. Plasma Sci. 37 30
[9] [10] Quan Y M 2008 Ph. D. Dissertation (Beijing: Institute of Electronics, Chinese Academy of Sciences) (in Chinese) [全亚民 2008 博士学位论文 (北京:中国科学院电子学研究所)]
[11] [12] Hsu H L 2006 Ph. D. Dissertation (Davis: University of California Davis)
[13] [14] Craig E 1967 IEEE Trans. Electron. Dev. 14 273
[15] [16] Kowalczyk R, Lau Y Y 2005 IEEE Trans. Electron. Dev. 52 2087
[17] [18] [19] Wilsen B C, Lau Y Y 2002 IEEE Trans. Plasma Sci. 30 1160
[20] Cui J, Luo J R, Zhu M, Guo W 2011 Acta Phys. Sin. 59 7383 (in Chinese) [崔 健、罗积润、朱 敏、郭 炜 2011 59 7383]
[21] [22] Zhao D, Ding Y G, Wang Y 2007 Acta Phys. Sin. 56 3324 (in Chinese) [赵 鼎、丁耀根、王 勇 2007 56 3324]
[23] [24] Yonezawa H, Okazaki Y 1984 A One-Dimension Disk Model Simulation for Klystron Design (California:SLAC of Stanford University)p5
[25] [26] Cui J, Luo J R, Zhu M, Guo W 2011 Acta Phys. Sin. 60 061101(in Chinese) [崔 健、罗积润、朱 敏、郭 炜 2011 60 061101]
[27] [28] Xie J L, Zhao Y X 1966 Bunching Theory of Klystrons (Beijing: Science Press) pp88, 94 (in Chinese) [谢家麟、赵永翔 1966 速调管群聚理论 (北京:科学出版社) 第88,94页]
[29] [30] [31] Pierce J R, Shepherd W G 1947 J. Bell. Syst. Techn. 26 663
[32] Ding Y G 2008 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) pp42, 64, 70 (in Chinese) [丁耀根2008大功率速调管的理论与计算模拟 (北京:国防工业出版社) 第42,64,70页]
[33] [34] Dong Y H, Ding Y G, Xiao L 2005 Acta Phys. Sin. 54 5629 (in Chinese) [董玉和、丁耀根、肖 刘 2005 54 5629]
[35] [36] Gong H R, Gong Y B, Wei Y Y, Tang C J, Xue D H, Wang W X 2006 Acta Phys. Sin. 55 5368 (in Chinese) [巩华荣、宫玉彬、魏彦玉、唐昌建、薛东海、王文祥 2006 55 5368]
[37] [38] [39] Hu Y L, Yang Z H, Li J Q, Li B, Gao P, Jin X L 2009 Acta Phys. Sin. 58 6665 (in Chinese) [胡玉禄、杨中海、李建清、李 斌、高 鹏、金晓林 2009 58 6665]
[40] Chodorow M, Kulke B 1966 IEEE Trans. Electron. Dev.13 439
[41]
Catalog
Metrics
- Abstract views: 7223
- PDF Downloads: 597
- Cited By: 0