-
电子回旋共振(ECR)中和器是微型ECR离子推力器的重要组成部分, 其引出的电子用于中和ECR离子源的离子束流, 避免了航天器表面电荷堆积, 并且电子引出性能对推力器的整体性能起着重要作用. 为了分析影响微型ECR中和器电子引出的因素, 本文建立了二维轴对称PIC/MCC计算模型, 通过数值模拟研究不同磁路结构对中和器的电子引出, 及不同腔体长度对壁面电流损失的影响. 计算结果表明, ECR区位置和引出孔附近磁场构型对中和器的电子引出性能至关重要. 当ECR区位于天线上游, 电子在迁移扩散中易损失, 并且电子跨过引出孔前电势阱所需的能量更高. 如果更多磁力线平行通过引出孔, 中和器引出相同电子电流所需电压较小. 当ECR区被天线切割或位于下游时, 电子更易沿磁力线迁移到引出孔附近, 从而降低了收集板电压. 研究了同一磁路结构下不同腔体长度对电子引出的影响, 发现增加腔体长度, 使得更多平行轴线的磁力线通过引出孔从而避免电子损失在引出板表面, 增加了引出电子电流. 研究结果有助于设计合理的中和器磁路和腔体尺寸.The electron cyclotron resonance (ECR) neutralizer is an important part of the micro ECR ion thruster. The electrons extracted from the neutralizer are used to neutralize the ions extracted from the ECR ion source, thereby avoiding the surface charges accumulating on the spacecraft, and the behaviour of electron extraction affects the overall performance of the thruster. In order to investigate the electron extraction through the orifices of the micro ECR neutralizer, a two-dimensional particle-in-cell with Monte Carlo collision (PIC/MCC) model is established in this work. The effects of different magnetic circuits on the electron extraction of the neutralizer and the influence of different cavity lengths on the wall current loss are studied through numerical simulation. The effects of different magnetic circuit structures on the electron extraction and wall current loss of the neutralizer are studied. The calculation results show that the position of the ECR layer and the magnetic flux lines near the extraction orifices are very important for the electron extraction performance of the neutralizer. When the ECR layer is located upstream of the antenna, electrons are easily lost in migration and diffusion motion, and the energy required for the electrons to cross the potential well before the extraction hole is higher. If more magnetic flux lines pass parallelly through the extraction orifices, the neutralizer requires a small voltage to extract the same electron current. When the ECR layer is cut by the antenna or is located downstream of antenna, more electrons may migrate along the magnetic flux lines to the vicinity of the extraction orifices, thereby reducing the voltage of collector plate. The effects of different cavity lengths on the extraction of electrons under the same magnetic circuit structure are studied. It is found that increasing the length of the cavity allows more parallel-axis magnetic flux lines to pass through the extraction holes to avoid electron loss on the surface of the extraction plate, and thus increasing the extraction electron current. The research results conduce to designing a reasonable neutralizer magnetic circuit and cavity size.
-
Keywords:
- electron cyclotron resonance neutralizer /
- particle-in-cell with Monte Carlo collision simulation /
- magnetic circuit
[1] Koizumi H, Kuninaka H 2010 J. Propul. Power 26 601Google Scholar
[2] Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204Google Scholar
[3] Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2014 Trans. JSASS Aerospace Technol. Jpn. 12 19
[4] Koizumi H, Kawahara H, Yaginuma K, Asakawa J, Nakagawa Y, Nakagawa Y, Kojima S, Matsuguma T, Funase R, Nakatsuka J, Komurasaki K 2016 Trans. JSASS Aerospace Technol. Jpn. 14 13
[5] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰 2016 65 045201Google Scholar
Jin Y Z, Yang J, Feng B B, Luo L T, Tang M J 2016 Acta Phys. Sin. 65 045201Google Scholar
[6] Jin Y Z, Yang J, Tang M J, Luo L T, Feng B B 2016 Plasma Sci. Technol. 18 744Google Scholar
[7] 夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展 2019 68 235202Google Scholar
Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2019 Acta Phys. Sin. 68 235202Google Scholar
[8] Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2020 Vacuum 179 109517Google Scholar
[9] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展 2021 70 075204Google Scholar
Xia X, Yang J, Fu Y L, Wu X M, Geng H, Hu Z 2021 Acta Phys. Sin. 70 075204Google Scholar
[10] Ohmichi W, Kuninaka H 2014 J. Propul. Power 30 1368Google Scholar
[11] Masui H, Tashiro Y, Yamamoto N, Nakashima H, Funaki I 2006 Trans. Jpn. Soc. Aeronaut. Space Sci. 49 87Google Scholar
[12] 孟海波, 杨涓, 朱康武, 朱康武, 孙俊, 黄益智, 金逸舟, 刘宪闯 2018 西北工业大学学报 36 42Google Scholar
Meng H B, Yang J, Zhu K W, Sun J, Huang Y Z, Jin Y Z, Liu X C 2018 J. Northwestern Polytech. Univ. 36 42Google Scholar
[13] Hiramoto K, Nakagawa Y, Koizumi H, Komurasaki K, Takao Y 2016 Proceedings of 52nd AIAA/SAE/ASEE Joint Propulsion Conference & Exhibit Salt Lake City, U. S. A., July 25–27, 2016 p4946
[14] Takao Y, Koizumi H, Kasagi Y, Komurasaki K 2016 Trans. JSASS Aerospace Technol. Jpn. 14 41
[15] Sato Y, Koizumi H, Nakano M, Takao Y 2019 J. Appl. Phys. 126 243302Google Scholar
[16] Takao Y, Koizumi H, Komurasaki K, Eriguchi K, Ono K 2014 Plasma Sources Sci. Technol. 23 064004Google Scholar
[17] 汤明杰, 杨涓, 冯冰冰, 金逸舟, 罗立涛 2015 推进技术 36 1741Google Scholar
Tang M J, Yang J, Feng B B, Jin Y Z, Luo L T 2015 J. Propul. Technol. 36 1741Google Scholar
[18] Demmel J W, Gilbert J R, Li X S 1999 SIAM J. Matrix Anal. Appl. 20 915Google Scholar
[19] 张帆, 刘君, 陈飙松, 钟万勰 大连理工大学学报 55 449
Zhang F, Liu J, Chen B S, Zhong W X 2015 J. Dalian Univ. Technol. 55 449 (in Chinese)
[20] Cross Sections Extracted from Program Magboltz, Version 8.97 retrieved on March 6, 2020
[21] Nanbu K 2000 IEEE Trans. Plasma Sci. 28 971Google Scholar
[22] Szabo J 2001 Ph. D. Dissertation (Massachusetts: Institute of Technology)
[23] Dey I, Toyoda Y, Yamamoto N, Nakashima H 2015 Rev. Sci. Instrum. 86 1868
[24] Fu Y L, Yang J, Jin Y Z, Xia X, Meng H B 2019 Acta Astronaut. 164 387Google Scholar
[25] Chen F F 1974 Introduction to Plasma Physics (New York: Springer Science+Business Media) pp139–180
-
表 1 磁路几何参数
Table 1. Geometric parameters of magnetic circuits
H1/mm W1/mm H2/mm W2/mm 结构1 5.4 2 5.4 1.65 结构2 5.6 2.7 5.8 1.8 结构3 5.8 3 5.6 1.8 表 2 不同磁路下中和器引出束流的模拟结果与实验结果
Table 2. Simulation and experiment results of different magnetic circuits.
收集板
电压φ/V实验结果Ie/mA 模拟结果Ie/mA 电流相对
误差结构1 44 1.0 1.11 11% 结构2 15 1.0 1.14 14% 结构3 24 1.0 1.08 8% -
[1] Koizumi H, Kuninaka H 2010 J. Propul. Power 26 601Google Scholar
[2] Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204Google Scholar
[3] Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2014 Trans. JSASS Aerospace Technol. Jpn. 12 19
[4] Koizumi H, Kawahara H, Yaginuma K, Asakawa J, Nakagawa Y, Nakagawa Y, Kojima S, Matsuguma T, Funase R, Nakatsuka J, Komurasaki K 2016 Trans. JSASS Aerospace Technol. Jpn. 14 13
[5] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰 2016 65 045201Google Scholar
Jin Y Z, Yang J, Feng B B, Luo L T, Tang M J 2016 Acta Phys. Sin. 65 045201Google Scholar
[6] Jin Y Z, Yang J, Tang M J, Luo L T, Feng B B 2016 Plasma Sci. Technol. 18 744Google Scholar
[7] 夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展 2019 68 235202Google Scholar
Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2019 Acta Phys. Sin. 68 235202Google Scholar
[8] Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2020 Vacuum 179 109517Google Scholar
[9] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展 2021 70 075204Google Scholar
Xia X, Yang J, Fu Y L, Wu X M, Geng H, Hu Z 2021 Acta Phys. Sin. 70 075204Google Scholar
[10] Ohmichi W, Kuninaka H 2014 J. Propul. Power 30 1368Google Scholar
[11] Masui H, Tashiro Y, Yamamoto N, Nakashima H, Funaki I 2006 Trans. Jpn. Soc. Aeronaut. Space Sci. 49 87Google Scholar
[12] 孟海波, 杨涓, 朱康武, 朱康武, 孙俊, 黄益智, 金逸舟, 刘宪闯 2018 西北工业大学学报 36 42Google Scholar
Meng H B, Yang J, Zhu K W, Sun J, Huang Y Z, Jin Y Z, Liu X C 2018 J. Northwestern Polytech. Univ. 36 42Google Scholar
[13] Hiramoto K, Nakagawa Y, Koizumi H, Komurasaki K, Takao Y 2016 Proceedings of 52nd AIAA/SAE/ASEE Joint Propulsion Conference & Exhibit Salt Lake City, U. S. A., July 25–27, 2016 p4946
[14] Takao Y, Koizumi H, Kasagi Y, Komurasaki K 2016 Trans. JSASS Aerospace Technol. Jpn. 14 41
[15] Sato Y, Koizumi H, Nakano M, Takao Y 2019 J. Appl. Phys. 126 243302Google Scholar
[16] Takao Y, Koizumi H, Komurasaki K, Eriguchi K, Ono K 2014 Plasma Sources Sci. Technol. 23 064004Google Scholar
[17] 汤明杰, 杨涓, 冯冰冰, 金逸舟, 罗立涛 2015 推进技术 36 1741Google Scholar
Tang M J, Yang J, Feng B B, Jin Y Z, Luo L T 2015 J. Propul. Technol. 36 1741Google Scholar
[18] Demmel J W, Gilbert J R, Li X S 1999 SIAM J. Matrix Anal. Appl. 20 915Google Scholar
[19] 张帆, 刘君, 陈飙松, 钟万勰 大连理工大学学报 55 449
Zhang F, Liu J, Chen B S, Zhong W X 2015 J. Dalian Univ. Technol. 55 449 (in Chinese)
[20] Cross Sections Extracted from Program Magboltz, Version 8.97 retrieved on March 6, 2020
[21] Nanbu K 2000 IEEE Trans. Plasma Sci. 28 971Google Scholar
[22] Szabo J 2001 Ph. D. Dissertation (Massachusetts: Institute of Technology)
[23] Dey I, Toyoda Y, Yamamoto N, Nakashima H 2015 Rev. Sci. Instrum. 86 1868
[24] Fu Y L, Yang J, Jin Y Z, Xia X, Meng H B 2019 Acta Astronaut. 164 387Google Scholar
[25] Chen F F 1974 Introduction to Plasma Physics (New York: Springer Science+Business Media) pp139–180
计量
- 文章访问数: 3749
- PDF下载量: 72
- 被引次数: 0