-
By using scattering matrix method, we compare the propertics of acoustic phonon transport and thermal conductance in one-dimensional quantum waveguide modulated with both convex-shape and concave-shape quantum structures. The results show that the transmission spectra and thermal conductances are sensitive to the geometric structures of quantum dots, and the transmission rate and thermal conductance KCV in the convex-shape quantum structure are bigger than the transmission rate and thermal conductance KCC in the concave-shape quantum structure. The thermal conductance ratio KCV/KCC is dependent on the geometric detail of quantum dot, and the ratio increases with the increase of difference in side-length of the cross section between the quantum dot and the main quantum waveguide. The difference in thermal transport between the convex-shape and the concave-shape quantum structures originates from more excited dilatational acoustic modes in the convex-shape quantum structure than in the concave-shape quantum structure.
-
Keywords:
- acoustic phonon transport /
- thermal conductance /
- quantum structure
[1] Blencowe M P 2004 Phys. Rep. 395 159
[2] Tighe T S, Worlock J M, Roukes M L 1997 Appl. Phys. Lett. 70 2687
[3] [4] Wees B J, Houten H, Beenakker C W J, Williamson J G, Kouwenhoven L P, Marel D, Foxon C T 1988 Phys. Rev. Lett. 60 848
[5] [6] Muller J E 1992 Phys. Rev. Lett. 68 385
[7] [8] Duan W H, Zhu J L, Gu B L 1994 Phys. Rev. B 49 14403
[9] [10] [11] Chklovsii D B 1995 Phys. Rev. B 51 9895
[12] Li J, Zhang Z Q, Liu Y 1997 Phys. Rev. B 55 5337
[13] [14] Gu B Y, Sheng W D, Wang X H, Wang J 1997 Phys. Rev. B 56 13434
[15] [16] [17] Sim H S, Ahn K H, Chang K J, Ihm G, Kim N, Lee S J 1998 Phys. Rev. Lett. 80 1501
[18] Wang X H, Gu B Y, Yang G Z 1998 Phys. Rev. B 58 4629
[19] [20] [21] Chen K Q, Gu B Y, Chuu D S 1999 Int. J. Mod. Phys. B 13 903
[22] [23] Chen K Q, Wang X H, Gu B Y 2000 Phys. Rev. B 61 12075
[24] Xu H Q 2002 Phys. Rev. B 66 165305
[25] [26] Wu H B, Chang K, Xia J B 2002 Phys. Rev. B 65 195204
[27] [28] Zhu J L, Dai Z S, Hu X 2003 Phys. Rev. B 68 45324
[29] [30] [31] Xia J B, Li S S 2003 Phys. Rev. B 68 75310
[32] [33] Huang W Q, Chen K Q, Shuai Z G, Wang L L, Hu W Y 2004 Acta Phys. Sin. 53 2330 (in Chinese) [黄维清、陈克求、帅志刚、王玲玲、胡望宇 2004 53 2330 ]
[34] [35] Wang X J, Wang L L, Huang W Q, Tang L M, Chen K Q 2006 Acta Phys. Sin. 55 3649 (in Chinese) [王新军、王玲玲、黄维清、唐黎明、陈克求 2006 55 3649 ]
[36] [37] Rego L G C, Kirczenow G 1998 Phys. Rev. Lett. 81 232
[38] Schwab K, Henriksen E A, Norlock J M, Roukes M L 2000 Nature 404 974
[39] [40] Meschke M, Guichard W, Pekola J 2006 Nature 444 187
[41] [42] [43] Ojanen T, Heikkila T T 2007 Phys. Rev. B 76 073414
[44] Chiatti O, Nicholls J T, Proskuryakov Y, Lumpkin Y N, Farrer I, Ritchie D A 2006 Phys. Rev. Lett. 97 056601
[45] [46] [47] Cross M C, Lifshitz R 2001 Phys. Rev. B 64 85324
[48] [49] Chang C M, Geller M R 2005 Phys. Rev. B 71 125304
[50] [51] Tang L M, Wang L L, Chen K Q, Huang W Q, Zou B S 2006 Appl. Phys. Lett. 88 163505
[52] [53] Peng X F, He M D, Wang X J, Chen L C, Pan C L, Luo Y F 2011 Physica E 43 1065
[54] Nie L Y, Wang L L, Chen K Q, Zou B S, Zhao L H 2007 Physica E 39 185
[55] [56] [57] Xie F, Chen K Q, Wang Y G, Zhang Y 2008 J. Appl. Phys. 103 084501
[58] Li K M, Wang L L, Huang W Q, Zou B S, Wan Q 2009 J. Appl. Phys. 105 104515
[59] [60] [61] Santamore D H, Cross M C 2001 Phys. Rev. Lett. 87 115502
[62] Santamore D H, Cross M C 2001 Phys. Rev. B 63 184306
[63] [64] Chen K Q, Li W X, Duan W H, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422
[65] [66] [67] Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2004 J. Phys.: Condens. Matter 16 5049
[68] [69] Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W Y, Zou B S 2005 J. Appl. Phys. 98 093524
[70] [71] Yang P, Sun Q F, Guo H, Hu B B 2007 Phys. Rev. B 75 235319
[72] [73] Li K M, Wang L L, Huang W Q, Zou B S, Wan Q 2008 Phys. Lett. A 372 5816
[74] Volz S G, Chen G 1999 Appl. Phys. Lett. 75 2056
[75] [76] Li B W, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301
[77] [78] [79] Hu B B, Yang L, Zhang Y 2006 Phys. Rev. Lett. 97 124302
[80] [81] Eckmann J P, Carlos M M 2006 Phys. Rev. Lett. 97 094301
[82] Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2004 Appl. Phys. Lett. 85 822
[83] [84] [85] Ming Y, Wang Z X, Li Q, Ding Z Z 2007 Appl. Phys. Lett. 91 143508
[86] Peng X F, Chen K Q 2010 Physica E 42 1968
[87] [88] Peng X F, Chen K Q, Zou B S, Zhang Y 2007 Appl. Phys. Lett. 90 193502
[89] [90] Tanaka Y, Yoshida F, Tamura S 2005 Phys. Rev. B 71 205308
[91] [92] Peng X F, Chen K Q, Wang Q, Zhou B S 2010 Phys. Rev. B 81 195317
[93] -
[1] Blencowe M P 2004 Phys. Rep. 395 159
[2] Tighe T S, Worlock J M, Roukes M L 1997 Appl. Phys. Lett. 70 2687
[3] [4] Wees B J, Houten H, Beenakker C W J, Williamson J G, Kouwenhoven L P, Marel D, Foxon C T 1988 Phys. Rev. Lett. 60 848
[5] [6] Muller J E 1992 Phys. Rev. Lett. 68 385
[7] [8] Duan W H, Zhu J L, Gu B L 1994 Phys. Rev. B 49 14403
[9] [10] [11] Chklovsii D B 1995 Phys. Rev. B 51 9895
[12] Li J, Zhang Z Q, Liu Y 1997 Phys. Rev. B 55 5337
[13] [14] Gu B Y, Sheng W D, Wang X H, Wang J 1997 Phys. Rev. B 56 13434
[15] [16] [17] Sim H S, Ahn K H, Chang K J, Ihm G, Kim N, Lee S J 1998 Phys. Rev. Lett. 80 1501
[18] Wang X H, Gu B Y, Yang G Z 1998 Phys. Rev. B 58 4629
[19] [20] [21] Chen K Q, Gu B Y, Chuu D S 1999 Int. J. Mod. Phys. B 13 903
[22] [23] Chen K Q, Wang X H, Gu B Y 2000 Phys. Rev. B 61 12075
[24] Xu H Q 2002 Phys. Rev. B 66 165305
[25] [26] Wu H B, Chang K, Xia J B 2002 Phys. Rev. B 65 195204
[27] [28] Zhu J L, Dai Z S, Hu X 2003 Phys. Rev. B 68 45324
[29] [30] [31] Xia J B, Li S S 2003 Phys. Rev. B 68 75310
[32] [33] Huang W Q, Chen K Q, Shuai Z G, Wang L L, Hu W Y 2004 Acta Phys. Sin. 53 2330 (in Chinese) [黄维清、陈克求、帅志刚、王玲玲、胡望宇 2004 53 2330 ]
[34] [35] Wang X J, Wang L L, Huang W Q, Tang L M, Chen K Q 2006 Acta Phys. Sin. 55 3649 (in Chinese) [王新军、王玲玲、黄维清、唐黎明、陈克求 2006 55 3649 ]
[36] [37] Rego L G C, Kirczenow G 1998 Phys. Rev. Lett. 81 232
[38] Schwab K, Henriksen E A, Norlock J M, Roukes M L 2000 Nature 404 974
[39] [40] Meschke M, Guichard W, Pekola J 2006 Nature 444 187
[41] [42] [43] Ojanen T, Heikkila T T 2007 Phys. Rev. B 76 073414
[44] Chiatti O, Nicholls J T, Proskuryakov Y, Lumpkin Y N, Farrer I, Ritchie D A 2006 Phys. Rev. Lett. 97 056601
[45] [46] [47] Cross M C, Lifshitz R 2001 Phys. Rev. B 64 85324
[48] [49] Chang C M, Geller M R 2005 Phys. Rev. B 71 125304
[50] [51] Tang L M, Wang L L, Chen K Q, Huang W Q, Zou B S 2006 Appl. Phys. Lett. 88 163505
[52] [53] Peng X F, He M D, Wang X J, Chen L C, Pan C L, Luo Y F 2011 Physica E 43 1065
[54] Nie L Y, Wang L L, Chen K Q, Zou B S, Zhao L H 2007 Physica E 39 185
[55] [56] [57] Xie F, Chen K Q, Wang Y G, Zhang Y 2008 J. Appl. Phys. 103 084501
[58] Li K M, Wang L L, Huang W Q, Zou B S, Wan Q 2009 J. Appl. Phys. 105 104515
[59] [60] [61] Santamore D H, Cross M C 2001 Phys. Rev. Lett. 87 115502
[62] Santamore D H, Cross M C 2001 Phys. Rev. B 63 184306
[63] [64] Chen K Q, Li W X, Duan W H, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422
[65] [66] [67] Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2004 J. Phys.: Condens. Matter 16 5049
[68] [69] Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W Y, Zou B S 2005 J. Appl. Phys. 98 093524
[70] [71] Yang P, Sun Q F, Guo H, Hu B B 2007 Phys. Rev. B 75 235319
[72] [73] Li K M, Wang L L, Huang W Q, Zou B S, Wan Q 2008 Phys. Lett. A 372 5816
[74] Volz S G, Chen G 1999 Appl. Phys. Lett. 75 2056
[75] [76] Li B W, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301
[77] [78] [79] Hu B B, Yang L, Zhang Y 2006 Phys. Rev. Lett. 97 124302
[80] [81] Eckmann J P, Carlos M M 2006 Phys. Rev. Lett. 97 094301
[82] Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2004 Appl. Phys. Lett. 85 822
[83] [84] [85] Ming Y, Wang Z X, Li Q, Ding Z Z 2007 Appl. Phys. Lett. 91 143508
[86] Peng X F, Chen K Q 2010 Physica E 42 1968
[87] [88] Peng X F, Chen K Q, Zou B S, Zhang Y 2007 Appl. Phys. Lett. 90 193502
[89] [90] Tanaka Y, Yoshida F, Tamura S 2005 Phys. Rev. B 71 205308
[91] [92] Peng X F, Chen K Q, Wang Q, Zhou B S 2010 Phys. Rev. B 81 195317
[93]
Catalog
Metrics
- Abstract views: 7056
- PDF Downloads: 633
- Cited By: 0