-
In this paper, we first improve the traditional transfer matrix method to adapt to one-dimensional photonic crystal consisting of arbitrary materials, and then use it to study the reflection phase characteristics of two kinds of photonic crystals, i.e., a simple periodic photonic crystal structure and a coupled-cavity asymmetric photonic crystal with gradually changed thickness of surface layer. For both of the structures, the reflectivity within photonic band gap is above 98% and hardly affected by the thickness of the surface layer. However, their reflection phases exhibit distinctly different properties. For the simple photonic crystal structure, the reflection phases of both TE and TM polarizations are sensitively dependent on the thickness of surface layer, but their phase difference is almost the same as the thickness of surface layer varies, which cannot change the polarization of reflected light. While for the coupled-cavity asymmetric photonic crystal structure, studies show that the degenerate defect modes within photonic band gap will split as the thickness of the surface layer varies. Moreover, around the splitting defect modes the reflection phases of both TE and TM polarizations, as well as their phase difference, are sensitively dependent on the thickness of surface layer, resulting in sensitive polarization change of reflected light. The physical reason is attributed to the dramatic phase change caused by the splitting of degenerate defect modes. The above reflection phase characteristics of coupled-cavity asymmetric photonic crystals have potential in lowering or even eliminating the coherence of lasers in some special application cases. As an example, we design a one-dimensional photonic crystal structure with two-dimensional periodic varying thickness of surface layer. After an oblique incident narrowband laser beam is reflected from this structure and then focused by a lens, various polarized light beams (including linear polarized light beams along different directions, left-hand (or right-hand) circular (or elliptical) polarized light beams) will exist simultaneously, whose superposition will produce optical field with random phase and polarizations in the focal region. These results can effectively reduce the coherence of lasers, which holds promise in many fields such as laser nuclear fusion.
-
Keywords:
- photonic crystals /
- transfer matrix method /
- phase /
- polarization
[1] Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M 1984 Phys. Rev. Lett. 53 1057
[2] Wang L, Tschudi T, Halldrsson T, Petursson P R 1998 Appl. Opt. 37 1770
[3] Ghofraniha N, Viola I, Maria F D, Barbarella G, Gigli G, Conti C 2013 Laser Photon. Rev. 7 432
[4] Meja-Salazar J R, Porras-Montenegro N 2015 Superlattice. Microst. 80 118
[5] Wang H, Sha W, Huang Z X, Wu X L, Shen J 2014 Acta Phys. Sin. 63 184210 (in Chinese) [王辉, 沙威, 黄志祥, 吴先良, 沈晶 2014 63 184210]
[6] Liu Q N 2013 Chin. J. Lasers 40 0806001 (in Chinese) [刘启能 2013 中国激光 40 0806001]
[7] Xu H Z, Zhong R H, Wang X L, Huang X 2015 Appl. Opt. 54 4534
[8] Wang X, Gao W, Hung J, Tam W Y 2014 Appl. Opt. 53 2425
[9] Zhu Q G, Dong X Y, Wang C F, Wang N, Chen W D 2015 Acta Phys. Sin. 64 034209 (in Chinese) [朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东 2015 64 034209]
[10] Liang W Y, Chen W H, Yin M, Yin C P 2014 J. Opt. 16 065101
[11] Li W, Zhang X, Lin X, Jiang X 2014 Opt. Lett. 39 4486
[12] Liang W Y, Liu X M, Yin M 2013 J. Phys. D: Appl. Phys. 46 495109
[13] Bao Y J, Li S G, Zhang W, An G W, Fan Z K 2014 Chin. Phys. B 23 104218
[14] Gao Y H, Xu X S 2014 Chin. Phys. B 23 114205
[15] Baba T 2008 Nat. Photon. 2 465
[16] Winful H G 2003 Phys. Rev. Lett. 90 023901
[17] Yang X, Yu M, Kwong D L, Wong C W 2009 Phys. Rev. Lett. 102 173902
[18] Wu K S, Dong J W, Wang H Z 2008 Appl. Phys. B 91 145
[19] Liang W Y, Xu Z H, Liang J K, Chen Y J 2013 Chin. J. Quantum Electron. 30 250 (in Chinese) [梁文耀, 徐梓浩, 梁俊铿, 陈亿菁 2013 量子电子学报 30 250]
[20] Zhang W, Liu J, Huang W P, Zhao W 2009 Opt. Lett. 34 2676
[21] Liang W Y, Yin M, Li C, Yin C P, Wang H Z 2013 J. Opt. 15 035101
[22] Zhang X, Chen Y 2012 J. Opt. Soc. Am. B 29 2704
[23] Born M, Wolf E (Translated by Yang X S et al.) 2005 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp49-59 (in Chinese) [玻恩 M, 沃耳夫 E 著(杨葭荪 等译) 2005 光学原理 (第7版) (电子工业出版社) 第49-59页]
-
[1] Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M 1984 Phys. Rev. Lett. 53 1057
[2] Wang L, Tschudi T, Halldrsson T, Petursson P R 1998 Appl. Opt. 37 1770
[3] Ghofraniha N, Viola I, Maria F D, Barbarella G, Gigli G, Conti C 2013 Laser Photon. Rev. 7 432
[4] Meja-Salazar J R, Porras-Montenegro N 2015 Superlattice. Microst. 80 118
[5] Wang H, Sha W, Huang Z X, Wu X L, Shen J 2014 Acta Phys. Sin. 63 184210 (in Chinese) [王辉, 沙威, 黄志祥, 吴先良, 沈晶 2014 63 184210]
[6] Liu Q N 2013 Chin. J. Lasers 40 0806001 (in Chinese) [刘启能 2013 中国激光 40 0806001]
[7] Xu H Z, Zhong R H, Wang X L, Huang X 2015 Appl. Opt. 54 4534
[8] Wang X, Gao W, Hung J, Tam W Y 2014 Appl. Opt. 53 2425
[9] Zhu Q G, Dong X Y, Wang C F, Wang N, Chen W D 2015 Acta Phys. Sin. 64 034209 (in Chinese) [朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东 2015 64 034209]
[10] Liang W Y, Chen W H, Yin M, Yin C P 2014 J. Opt. 16 065101
[11] Li W, Zhang X, Lin X, Jiang X 2014 Opt. Lett. 39 4486
[12] Liang W Y, Liu X M, Yin M 2013 J. Phys. D: Appl. Phys. 46 495109
[13] Bao Y J, Li S G, Zhang W, An G W, Fan Z K 2014 Chin. Phys. B 23 104218
[14] Gao Y H, Xu X S 2014 Chin. Phys. B 23 114205
[15] Baba T 2008 Nat. Photon. 2 465
[16] Winful H G 2003 Phys. Rev. Lett. 90 023901
[17] Yang X, Yu M, Kwong D L, Wong C W 2009 Phys. Rev. Lett. 102 173902
[18] Wu K S, Dong J W, Wang H Z 2008 Appl. Phys. B 91 145
[19] Liang W Y, Xu Z H, Liang J K, Chen Y J 2013 Chin. J. Quantum Electron. 30 250 (in Chinese) [梁文耀, 徐梓浩, 梁俊铿, 陈亿菁 2013 量子电子学报 30 250]
[20] Zhang W, Liu J, Huang W P, Zhao W 2009 Opt. Lett. 34 2676
[21] Liang W Y, Yin M, Li C, Yin C P, Wang H Z 2013 J. Opt. 15 035101
[22] Zhang X, Chen Y 2012 J. Opt. Soc. Am. B 29 2704
[23] Born M, Wolf E (Translated by Yang X S et al.) 2005 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp49-59 (in Chinese) [玻恩 M, 沃耳夫 E 著(杨葭荪 等译) 2005 光学原理 (第7版) (电子工业出版社) 第49-59页]
Catalog
Metrics
- Abstract views: 6298
- PDF Downloads: 193
- Cited By: 0