-
The thermodynamic properties, structure, and dynamic properties of ethanol from ambient conditions to supercritical states were investigated by molecular dynamics simulation (MD). With the increase of temperature, the enthalpy and self-diffusion coefficients increase, while the hydrogen bonding interaction between ethanol molecules weakens. With the increase of pressure, the self-diffusion coefficients decrease, while the hydrogen bonding interaction increases. The self-diffusion coefficient of ethanol in supercritical region is 10 times greater than that in the liquid region. It changes slightly with temperature in the liquid region, while decreases rapidly with pressure in the gas region. The influence of density on self-diffusion coefficient could be manifested by the influence of temperature and pressure. Under supercritical conditions, the ethanol system shows aggregation phenomenon which is even more evident in the low-density region due to density fluctuations. The hydrogen bond of ethanol molecules significantly weakens, the structure becomes loose and the molecular polarity is greatly reduced in supercritical conditions compared with that in ambient conditions. Our results are in good agreement with the experimental data.
-
Keywords:
- supercritical fluid /
- ethanol /
- ambient temperature and pressure /
- molecular dynamics simulation
[1] Ecker C A, Knutson B L, Debendetti P G 1996 Nature 383 313
[2] Yangguchi T, Matubaysi N, Nakahara M 2004 J. Phys. Chem. A 108 1319
[3] Lu Y G, Peng J X 2008 Acta Phys. Sin. 57 1030(in Chinese) [卢义刚、彭健新 2008 57 1030]
[4] Fu D, Wang X M, Liu J M, Liu S J 2009 Acta Phys. Sin. 58 3022(in Chinese)[付 东、王学敏、刘建岷、刘绍军 2009 58 3022]
[5] Hoffmann M M, Conradi M S 1998 J. Phys. Chem. B 102 263
[6] Tsukhara T, Harada M, Tomiyasu H, Ikeda Y 2008 J. Phys. Chem. A 112 9657
[7] Lalanne P, Andanson J M, Soeten J C, Tassaing T, Danten Y, Besnard M 2004 J. Chem. Phys. A 108 3902
[8] Huang J, Huang J, Huang K, Zhou Q, Chen L, Wu Y Q, Zhu Z B 2006 Polym. Degrad. Stab. 91 2307
[9] Gui M M, Lee K T, Bhatia S 2009 J. Supercrit. Fluids 49 286
[10] Yan K F, Li X S, Chen Z Y, Li G, Li Z B 2007 Acta Phys. Sin. 56 6727(in Chinese) [颜克凤、李小森、陈朝阳、李 刚、 李志宝 2007 56 6727] 〖11] Meng L J, Li R W, Sun J D, Liu S J 2009 Acta Phys. Sin. 58 2637(in Chinese)[孟丽娟、李融武、孙俊东、刘绍军 2009 58 2637]
[11] Ungerer P, Nieto-Draghi C, Rousseau R, Ahunbay G, Lachet V 2007 J. Mol. Liq. 134 71
[12] Hou Z Y, Liu L X, Liu R S, Tian Z A 2009 Acta Phys. Sin. 58 4817(in Chinese)[侯兆阳、刘丽霞、刘让苏、田泽安 2009 58 4817]
[13] Ishii R, Okazaki S, Okada I, Furusaka M, Watanabe N, Misawa M, Fukunaga T 1996 J. Chem. Phys. 105 7011
[14] Zhou J, Lu X H, Wang Y R, Shi J 1999 Acta Phys. Chim. Sin. 15 1017(in Chinese)[周 健、陆小华、王延儒、时 均 1999 物理化学学报 15 1017]
[15] Chalaris M, Samios J 1999 J. Phys. Chem. B 103 1161
[16] Basi S, Yonker C R 1998 J. Phys. Chem. A 102 8641
[17] Padró J A, Saiz L, Guardià E 1997 J. Mol. Struct. 416 243
[18] Benmore C J 2000 J. Chem. Phys. 112 5877
[19] Chalaris M, Samios J 2004 Purem. Appl. Chem. 76 203
[20] Zhang Y, Yang J, Yu Y X, Li Y G 2005 J. Supercrit. Fluids 36 145
[21] Noskov S Y, Lamoureux G, Roux B 2005 J. Phys. Chem. B 109 6705
[22] Nose S A 1984 Mol. Phys. 52 255
[23] Sauermann P, Holzpfel K, Oprzynski J, Kohler F, Poot W, Loos T W 1995 Fluid. Phase. Equilib. 112 249
[24] Dillon H E, Penoncello S G 2004 Int. J. Thermophys. 25 321
[25] Pesche I B, Debendetti P G 1991 J. Phys. Chem. 95 386
[26] Schnabel T, Srivastava A, Vrabec J, Hasse H 2007 J. Phys. Chem. B 111 9871
[27] Shukla C L, Hallett J P, Popov A V, Hernandez R, Liotta C L, Ecker C A 2006 J. Phys. Chem. B 110 24101
[28] Karger N, Vardag T, Ludenmann H T 1990 J. Chem. Phys. 93 3437
-
[1] Ecker C A, Knutson B L, Debendetti P G 1996 Nature 383 313
[2] Yangguchi T, Matubaysi N, Nakahara M 2004 J. Phys. Chem. A 108 1319
[3] Lu Y G, Peng J X 2008 Acta Phys. Sin. 57 1030(in Chinese) [卢义刚、彭健新 2008 57 1030]
[4] Fu D, Wang X M, Liu J M, Liu S J 2009 Acta Phys. Sin. 58 3022(in Chinese)[付 东、王学敏、刘建岷、刘绍军 2009 58 3022]
[5] Hoffmann M M, Conradi M S 1998 J. Phys. Chem. B 102 263
[6] Tsukhara T, Harada M, Tomiyasu H, Ikeda Y 2008 J. Phys. Chem. A 112 9657
[7] Lalanne P, Andanson J M, Soeten J C, Tassaing T, Danten Y, Besnard M 2004 J. Chem. Phys. A 108 3902
[8] Huang J, Huang J, Huang K, Zhou Q, Chen L, Wu Y Q, Zhu Z B 2006 Polym. Degrad. Stab. 91 2307
[9] Gui M M, Lee K T, Bhatia S 2009 J. Supercrit. Fluids 49 286
[10] Yan K F, Li X S, Chen Z Y, Li G, Li Z B 2007 Acta Phys. Sin. 56 6727(in Chinese) [颜克凤、李小森、陈朝阳、李 刚、 李志宝 2007 56 6727] 〖11] Meng L J, Li R W, Sun J D, Liu S J 2009 Acta Phys. Sin. 58 2637(in Chinese)[孟丽娟、李融武、孙俊东、刘绍军 2009 58 2637]
[11] Ungerer P, Nieto-Draghi C, Rousseau R, Ahunbay G, Lachet V 2007 J. Mol. Liq. 134 71
[12] Hou Z Y, Liu L X, Liu R S, Tian Z A 2009 Acta Phys. Sin. 58 4817(in Chinese)[侯兆阳、刘丽霞、刘让苏、田泽安 2009 58 4817]
[13] Ishii R, Okazaki S, Okada I, Furusaka M, Watanabe N, Misawa M, Fukunaga T 1996 J. Chem. Phys. 105 7011
[14] Zhou J, Lu X H, Wang Y R, Shi J 1999 Acta Phys. Chim. Sin. 15 1017(in Chinese)[周 健、陆小华、王延儒、时 均 1999 物理化学学报 15 1017]
[15] Chalaris M, Samios J 1999 J. Phys. Chem. B 103 1161
[16] Basi S, Yonker C R 1998 J. Phys. Chem. A 102 8641
[17] Padró J A, Saiz L, Guardià E 1997 J. Mol. Struct. 416 243
[18] Benmore C J 2000 J. Chem. Phys. 112 5877
[19] Chalaris M, Samios J 2004 Purem. Appl. Chem. 76 203
[20] Zhang Y, Yang J, Yu Y X, Li Y G 2005 J. Supercrit. Fluids 36 145
[21] Noskov S Y, Lamoureux G, Roux B 2005 J. Phys. Chem. B 109 6705
[22] Nose S A 1984 Mol. Phys. 52 255
[23] Sauermann P, Holzpfel K, Oprzynski J, Kohler F, Poot W, Loos T W 1995 Fluid. Phase. Equilib. 112 249
[24] Dillon H E, Penoncello S G 2004 Int. J. Thermophys. 25 321
[25] Pesche I B, Debendetti P G 1991 J. Phys. Chem. 95 386
[26] Schnabel T, Srivastava A, Vrabec J, Hasse H 2007 J. Phys. Chem. B 111 9871
[27] Shukla C L, Hallett J P, Popov A V, Hernandez R, Liotta C L, Ecker C A 2006 J. Phys. Chem. B 110 24101
[28] Karger N, Vardag T, Ludenmann H T 1990 J. Chem. Phys. 93 3437
Catalog
Metrics
- Abstract views: 11441
- PDF Downloads: 1026
- Cited By: 0