搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶合金熔体中的动力学拓扑相变

秦海蓉 侯翊洁 杨昆 靳灿灿 吕勇军

引用本文:
Citation:

非晶合金熔体中的动力学拓扑相变

秦海蓉, 侯翊洁, 杨昆, 靳灿灿, 吕勇军

Topological phase transition in metallic glass formers

QIN Hairong, HOU Yijie, YANG Kun, JIN Cancan, LYU Yongjun
cstr: 32037.14.aps.74.20250513
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 非晶态合金在非晶态形成过程中呈现出复杂的动力学行为, 理解非晶态合金及其过冷熔体的动力学规律是非晶态研究领域的重要内容. 从拓扑序的角度去重新审视非晶态系统的动力学行为为深入理解非晶态及非晶态转变的物理本质提供了一个全新的视角. 本文采用分子动力学模拟方法研究了CuZr合金熔体在非晶态转变中的微观动力学特征. 模拟发现, 在原子的位移矢量场中出现大量的涡旋结构, 涡旋形成率在非晶态转变温度附近出现不连续降低. 涡旋伴随着高应变事件的发生, 两者的形成率之间存在特征比值, 而在涡旋态转变前后该比值加倍. 分析认为, 观察到的涡旋态转变具有拓扑相变的特征, 即在非晶合金熔体的位移矢量场中存在拓扑相变. 涡旋及相伴产生的高应变事件与非晶合金熔体中的各种次级弛豫有着密切的关系. 本文为理解和揭示非晶态转变过程中复杂动力学行为的物理本质提供了一个新的切入点.
    Metallic glass-forming systems exhibit complex dynamic behaviors during the glass transition. Understanding the dynamic nature of metallic glasses and supercooled liquids is a crucial issue in the study of glassy physics. Topological order provides a novel perspective for re-examining the dynamics of glassy systems and elucidating the physical essence of the glassy state and glass transition. In this study, the microscopic dynamics of CuZr melts in the glass transition are investigated using molecular dynamics simulations. The single-particle dynamic characteristics in the supercooled CuZr melt are the random jump motions of atoms after a long-term caging period. To capture these dynamics, the displacement vector field is constructed based on the spatiotemporal distribution of these jump events. The simulation results reveal that there exist the numerous vortex structures in the displacement vector field. Notably, the vortex formation rate, which is defined as the number of vortices generated per unit time, exhibits a sharp drop near the glass transition temperature. The probability distribution of vortex formation rate displays a bimodal pattern on the drops, indicating the coexistence of two different dynamical states related to vortex formation. Multiple high-strain events are observed surrounding these vortices. It is found that the two vortex states during the transition exhibit markedly different characteristic ratios of vortices to high-strain events (1∶4 vs 1∶8), indicating a change in the coupling strength between vortex formation and high-strain activity. The high-strain events predominantly form in the regions between positive and negative vortices, and the specific quantitative relationship between vortices and high-strain events indirectly reflects the presence of strongly interacting vortex-antivortex pairs in the melt. During the vortex state transition, the vortex-to-high-strain-event ratio suddenly doubles, which means that this transition is not only a sudden change in the rate of vortex formation, but also an enhancement of the interactions between vortex-antivortex pairs, representing a change in global topological properties. These findings demonstrate that the vortex transition exhibits the characteristics of a topological phase transition, thereby predicting the existence of a topological phase transition in the displacement vector field of metallic glass-forming systems. Further speculation suggests that vortices and high-strain events are related to multiple secondary relaxation processes. This study provides a new perspective for understanding the dynamics of glass-forming systems and the glass transition.
      通信作者: 吕勇军, yongjunlv@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52031016, 52071029)资助的课题.
      Corresponding author: LYU Yongjun, yongjunlv@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52031016, 52071029).
    [1]

    Klement W, Willens R, Duwez P 1960 Nature 187 869Google Scholar

    [2]

    Bernal J D 1959 Nature 183 141Google Scholar

    [3]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [4]

    Finney J L 1970 Proc. Roy. Soc. Lond. A 319 479Google Scholar

    [5]

    Miracle D B 2004 Nat. Mater. 3 697Google Scholar

    [6]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [7]

    Frank F C 1952 Proc. R. Soc. Lond. A 215 43Google Scholar

    [8]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376Google Scholar

    [9]

    李茂枝 2017 66 176107Google Scholar

    Li M Z 2017 Acta Phys. Sin. 66 176107Google Scholar

    [10]

    蒋元祺, 彭平 2018 67 132101Google Scholar

    Jiang Y Q, Peng P 2018 Acta Phys. Sin. 67 132101Google Scholar

    [11]

    Wu C, Huang Y J, Shen J 2013 Chin. Phys. Lett. 30 106102Google Scholar

    [12]

    Liu X J, Xu Y, Hui X, Lu Z P, Li F, Chen G L, Lu J, Liu C T 2010 Phys. Rev. Lett. 105 155501Google Scholar

    [13]

    Lü Y J, Entel P 2011 Phys. Rev. B 84 104203Google Scholar

    [14]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 6 6053Google Scholar

    [15]

    Neophytou A, Chakrabarti D, Sciortino F 2022 Nat. Phys. 18 1248Google Scholar

    [16]

    Berezinskii V L 1971 Sov. Phys. JETP 32 493

    [17]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181Google Scholar

    [18]

    Kosterlitz J M 2016 Rep. Prog. Phys. 79 026001Google Scholar

    [19]

    DiDonna B A, Lubensky T C 2005 Phys. Rev. E 72 066619Google Scholar

    [20]

    Del Gado E, Ilg P, Kroeger M, Oettinger H C 2008 Phys. Rev. Lett. 101 095501Google Scholar

    [21]

    Dasgupta R, Hentschel H G E, Procaccia I 2012 Phys. Rev. Lett. 109 255502Google Scholar

    [22]

    Wu Z W, Chen Y, Wang W H, Kob W, Xu L 2023 Nature Commun. 14 2955Google Scholar

    [23]

    Lü Y J, Guo C C, Huang H S, Gao J A, Qin H R, Wang W H 2021 Acta Mater. 211 116873Google Scholar

    [24]

    Lü Y J, Qin H R, Guo C C 2021 Phys. Rev. B 104 224103Google Scholar

    [25]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901Google Scholar

    [26]

    Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Yagodin D, Popel P 2009 Philos. Mag. 89 967Google Scholar

    [27]

    Nosé S 1984 J. Chem. Phys. 81 511Google Scholar

    [28]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [29]

    Plimpton S 1995 J. Comp. Phys. 117 1Google Scholar

    [30]

    Chou C F, Jin A J, Hui S W, Huang C C, Ho J T 1998 Science 280 1424Google Scholar

    [31]

    Mirkovic J, Savel’ev S E, Sugahara E, Kadowaki K 2001 Phys. Rev. Lett. 86 886Google Scholar

    [32]

    Kim S, Hu C R, Andrews M J 2004 Phys. Rev. B 69 094521Google Scholar

  • 图 1  CuZr合金熔体中原子“跳跃”运动图 (a)一个原子连续两次“跳跃”的轨迹图; (b) “跳跃”运动所对应的平方位移曲线, 橙色和蓝色表示不同的两个粒子

    Fig. 1.  Jump motion of atoms in CuZr melt: (a) Spatial trajectory of successive jumps; (b) a time-res squared displacement of jumping atoms, orange and blue represent two different types of particles.

    图 2  不同温度下CuZr合金熔体的均方位移与时间的对数图, 圆圈表示曲线的拐点, 虚线表示对各个温度下拐点的指数拟合

    Fig. 2.  Logarithm plot of mean squared displacements at various temperatures in CuZr melt, the open circles denote the inflection points in curves and the dashed line is an exponential-function fit to the inflection points.

    图 3  CuZr过冷合金熔体中原子“跳跃”运动的空间构型 (a)在较短的观察时间内观察到弦链状或环状结构; (b)在较长观察时间内观察到的涡旋结构; (c)位移矢量流场在X方向上的一个剖面, 可以观察到由大量涡旋构成的涡旋阵列

    Fig. 3.  Spatial configuration of jump motions of atoms in supercooled CuZr melt: (a) String- and loop-like configurations observed in a short time interval; (b) vortex that is observed in a relatively long time; (c) a cross section of the flow field of atomic displacements along the X direction, which shows a disordered vortex lattice composed of vortices.

    图 4  涡旋和高应变事件形成率 (a)涡旋和高应变事件形成率随约化温度的变化; (b)涡旋数与高应变事件形成率之比随约化温度的变化

    Fig. 4.  Formation rates of vortices and HSEs: (a) Formation rates of vortices and HSEs versus scaled temperature; (b) ratio of vortex to HSE formation rates as a function of scaled temperature.

    图 5  涡旋态转变过程中, 在T/Tg = 1.231, 0.974和0.872三个温度下系统涡旋形成率的概率分布

    Fig. 5.  Probability distributions of vortex formation rates at T/Tg = 1.231, 0.974和0.872, which spans the vortex transition.

    图 6  涡旋和高应变事件结构示意图 (a) 涡旋态I的两种结构; (b)涡旋态II的两种结构. 圆圈表示涡旋周边的高应变事件

    Fig. 6.  Schematic diagram of vortex and high-strain event pairs. Two configurations of the vortex state I (a) and II (b). The open circles denote the high strain events surrounding a vortex.

    图 7  不同温度下涡旋(符号)和高应变事件(实线)的自相关函数. 虚线表示用不同指数的KWW函数拟合短时和长时关联函数

    Fig. 7.  Autocorrelation functions of vortices (symbols) and high strain events (solid lines) at different temperatures. The dashed lines represent the KWW fits with different exponents to the short- and long-time decays of vortices.

    Baidu
  • [1]

    Klement W, Willens R, Duwez P 1960 Nature 187 869Google Scholar

    [2]

    Bernal J D 1959 Nature 183 141Google Scholar

    [3]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [4]

    Finney J L 1970 Proc. Roy. Soc. Lond. A 319 479Google Scholar

    [5]

    Miracle D B 2004 Nat. Mater. 3 697Google Scholar

    [6]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [7]

    Frank F C 1952 Proc. R. Soc. Lond. A 215 43Google Scholar

    [8]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376Google Scholar

    [9]

    李茂枝 2017 66 176107Google Scholar

    Li M Z 2017 Acta Phys. Sin. 66 176107Google Scholar

    [10]

    蒋元祺, 彭平 2018 67 132101Google Scholar

    Jiang Y Q, Peng P 2018 Acta Phys. Sin. 67 132101Google Scholar

    [11]

    Wu C, Huang Y J, Shen J 2013 Chin. Phys. Lett. 30 106102Google Scholar

    [12]

    Liu X J, Xu Y, Hui X, Lu Z P, Li F, Chen G L, Lu J, Liu C T 2010 Phys. Rev. Lett. 105 155501Google Scholar

    [13]

    Lü Y J, Entel P 2011 Phys. Rev. B 84 104203Google Scholar

    [14]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 6 6053Google Scholar

    [15]

    Neophytou A, Chakrabarti D, Sciortino F 2022 Nat. Phys. 18 1248Google Scholar

    [16]

    Berezinskii V L 1971 Sov. Phys. JETP 32 493

    [17]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181Google Scholar

    [18]

    Kosterlitz J M 2016 Rep. Prog. Phys. 79 026001Google Scholar

    [19]

    DiDonna B A, Lubensky T C 2005 Phys. Rev. E 72 066619Google Scholar

    [20]

    Del Gado E, Ilg P, Kroeger M, Oettinger H C 2008 Phys. Rev. Lett. 101 095501Google Scholar

    [21]

    Dasgupta R, Hentschel H G E, Procaccia I 2012 Phys. Rev. Lett. 109 255502Google Scholar

    [22]

    Wu Z W, Chen Y, Wang W H, Kob W, Xu L 2023 Nature Commun. 14 2955Google Scholar

    [23]

    Lü Y J, Guo C C, Huang H S, Gao J A, Qin H R, Wang W H 2021 Acta Mater. 211 116873Google Scholar

    [24]

    Lü Y J, Qin H R, Guo C C 2021 Phys. Rev. B 104 224103Google Scholar

    [25]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901Google Scholar

    [26]

    Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Yagodin D, Popel P 2009 Philos. Mag. 89 967Google Scholar

    [27]

    Nosé S 1984 J. Chem. Phys. 81 511Google Scholar

    [28]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [29]

    Plimpton S 1995 J. Comp. Phys. 117 1Google Scholar

    [30]

    Chou C F, Jin A J, Hui S W, Huang C C, Ho J T 1998 Science 280 1424Google Scholar

    [31]

    Mirkovic J, Savel’ev S E, Sugahara E, Kadowaki K 2001 Phys. Rev. Lett. 86 886Google Scholar

    [32]

    Kim S, Hu C R, Andrews M J 2004 Phys. Rev. B 69 094521Google Scholar

  • [1] 郭刚峰, 包茜茜, 谭磊, 刘伍明. 非厄米准周期系统中的二次局域体态和局域-扩展的边缘态.  , 2025, 74(1): 010301. doi: 10.7498/aps.74.20240933
    [2] 包茜茜, 郭刚峰, 谭磊, 刘伍明. 周期驱动系统中由次近邻跃迁诱导的非厄米拓扑相.  , 2025, 74(17): . doi: 10.7498/aps.74.20250599
    [3] 古燕, 王智鹏, 陆展鹏. 准晶势调制的一维p波超导体中的拓扑量子相变.  , 2025, 74(10): 100303. doi: 10.7498/aps.74.20250137
    [4] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质.  , 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [5] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变.  , 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [6] 雍康乐, 闫家伟, 唐善发, 张蓉竹. 彗差和球差对涡旋光束斜程传输特性的影响.  , 2020, 69(1): 014201. doi: 10.7498/aps.69.20191254
    [7] 蒋光禹, 孙超, 李沁然. 涡旋对深海风成噪声垂直空间特性的影响.  , 2020, 69(14): 144301. doi: 10.7498/aps.69.20200059
    [8] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建.  , 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [9] 王力, 刘静思, 李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明. 旋量玻色-爱因斯坦凝聚体拓扑性质的研究进展.  , 2020, 69(1): 010303. doi: 10.7498/aps.69.20191648
    [10] 裴东亮, 杨洮, 陈猛, 刘宇, 徐文帅, 张满弓, 姜恒, 王育人. 基于复合蜂窝结构的宽带周期与非周期声拓扑绝缘体.  , 2020, 69(2): 024302. doi: 10.7498/aps.69.20191454
    [11] 李耀义, 贾金锋. 在人工拓扑超导体磁通涡旋中寻找Majorana零能模.  , 2019, 68(13): 137401. doi: 10.7498/aps.68.20181698
    [12] 沈清玮, 徐林, 蒋建华. 圆环结构磁光光子晶体中的拓扑相变.  , 2017, 66(22): 224102. doi: 10.7498/aps.66.224102
    [13] 王峥, 汪卫华. 非晶合金中的流变单元.  , 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [14] 卞西磊, 王刚. 非晶合金的离子辐照效应.  , 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [15] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态.  , 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [16] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变.  , 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [17] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化.  , 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [18] 李永青, 李希国, 刘紫玉, 罗培燕, 张鹏鸣. Jackiw-Pi模型的新涡旋解.  , 2007, 56(11): 6178-6182. doi: 10.7498/aps.56.6178
    [19] 黄思训, 蔡其发, 项 杰, 张 铭. 台风风场分解.  , 2007, 56(5): 3022-3027. doi: 10.7498/aps.56.3022
    [20] 王 莉, 王庆峰, 王喜庆, 吕百达. 两束离轴高斯光束干涉场中的横向光涡旋.  , 2007, 56(1): 201-207. doi: 10.7498/aps.56.201
计量
  • 文章访问数:  400
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-21
  • 修回日期:  2025-05-21
  • 上网日期:  2025-06-11
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map