-
实现玻色-爱因斯坦凝聚的原子大多具备内部自旋自由度, 在光势阱下原子内部自旋被解冻, 从而使原子可以凝聚到各个超精细量子态上, 形成旋量玻色-爱因斯坦凝聚体. 灵活的自旋自由度成为体系相关的动力学变量, 可以使体系出现新奇的拓扑量子态, 如自旋畴壁、涡旋、磁单极子、斯格明子等. 本文综述了旋量玻色-爱因斯坦凝聚的实验和理论研究, 旋量玻色-爱因斯坦凝聚体中拓扑缺陷的种类, 以及两分量、三分量玻色-爱因斯坦凝聚体中拓扑缺陷的研究进展.
-
关键词:
- 旋量玻色-爱因斯坦凝聚体 /
- 自旋畴壁 /
- 涡旋 /
- 斯格明子 /
- 磁单极子
Most of the atoms that realize Bose-Einstein condensation have internal spin degree of freedom. In the optical potential trap, the internal spin of the atom is thawed, and the atom can be condensed into each hyperfine quantum state to form the spinor Bose-Einstein condensate. Flexible spin degrees of freedom become dynamic variables related to the system, which can make the system appear novel topological quantum states, such as spin domain wall, vortex, magnetic monopole, skymion, and so on. In this paper, the experimental and theoretical study of spinor Bose-Einstein condensation, the types of topological defects in spinor Bose-Einstein condensate, and the research progress of topological defects in spinor two-component and three-component Bose-Einstein condensate are reviewed.-
Keywords:
- spinor Bose - Einstein condensation /
- spin domain wall /
- vortex /
- magnetic monopole /
- skymion
[1] Coen S, Haelterman M 2001 Phys. Rev. Lett. 87 140401
Google Scholar
[2] Williams J E, Holland M J 1999 Nature 401 568
Google Scholar
[3] Abo-Shaeer J R, Raman C, Vogels J M, Ketterle W 2001 Science 292 476
Google Scholar
[4] Leanhardt A E, Shin Y, Kielpinski D, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 140403
Google Scholar
[5] Sadler L E, Higbie J M, Leslie S R, Vengalattore M, Stamper-Kurn D M 2006 Nature 443 312
Google Scholar
[6] Alan L M, John V P, William D P 1985 Phys. Rev. Lett. 54 2596
Google Scholar
[7] Reichel J, Hansel W, Hansch T W 1999 Phys. Rev. Lett. 83 3398
Google Scholar
[8] Wolfgang P, Michael H A, Jason R E 1995 Phys. Rev. Lett. 74 3352
Google Scholar
[9] Pethick C, Smith H 2008 Bose-Einstein Condensation in Dilute Gases (UK: Cambridge Univ. Press) p569-584
[10] Pitaevskii L, Stringari S 2002 Bose-Einstein Condensation(Oxford: Clarendon Press)p382-395
[11] Stenger J, Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H J, Ketterle W 1998 J. Low Temp. Phys. 113 167
Google Scholar
[12] Bloch I, Dali bard J, Zwerger W 2008 Rev. Mod. Phys. 80 885
Google Scholar
[13] Stenger J, Inouye S, Stamper-Kurn D M, Miesner H-J, Chikkatur A P, Ketterle W 1988 Nature 396 345
[14] Kawaguchi Y, Ueda M 2012 Phys. Rep. 520 253
Google Scholar
[15] Weiler C N, Neely T W, Scherer D R, Bradley A S, Davis M J, Anderson B P 2008 Nature 455 948
[16] Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H-J, Stenger J, Ketterle W 1998 Phys. Rev. Lett. 80 2027
Google Scholar
[17] Barrett M D, Sauer J A, Chapman M S 2001 Phys. Rev. Lett. 87 010404
Google Scholar
[18] Gustavson T L, leanhardt A E, Chikkatur A P 2003 Phys. Rev. Lett. 90 090401
Google Scholar
[19] Chang M S, Hamley C D, Barrett M D 2004 Phys. Rev. Lett. 92 140403
Google Scholar
[20] Schmaljohann H, Erhard M, Kronjager J 2004 Phys. Rev. Lett. 92 040402
Google Scholar
[21] Kuwamoto T, Araki K, Eno T 2004 Phys. Rev. A 69 063604
Google Scholar
[22] Pasquiou B, Marechal E, Vernac L 2012 Phys. Rev. Lett. 108 045307
Google Scholar
[23] Lin Y J, Jimenez G K, Spielman I B 2011 Nature 471 83
[24] Galitshi V, Spielman I B 2013 Nature 494 49
[25] Dalibard J, Gerbier F, Juzeliunas G, Ohberg P 2011 Rev. Mod. Phys. 83 1523
Google Scholar
[26] Zhai H 2012 Int. J. Mod. Phys. B 26 1230001
Google Scholar
[27] Goldman N, Juzeliunas G, Ohberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401
Google Scholar
[28] Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B 2012 Phys. Rev. Lett. 109 115301
Google Scholar
[29] Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H 2012 Phys. Rev. Lett. 109 095301
Google Scholar
[30] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
Google Scholar
[31] Liao R, Huang Z G, Lin X M, Fialko O 2014 Phys. Rev. A 89 063614
Google Scholar
[32] Bhat I A, Mithun T, Malomed B A, Porsezian K 2015 Phys. Rev. A 92 063606
Google Scholar
[33] Hu F Q, Wang J J, Yu Z F, Zhang A X, Xue J K 2016 Phys. Rev. E 93 022214
Google Scholar
[34] Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301
Google Scholar
[35] Qu C, Hamner C, Gong M, Zhang C, Engels P 2013 Phys. Rev. A 88 021604
Google Scholar
[36] Leblanc L J, Beeler M C, Garcia K J, Perry A R, Sugawa S, Williams R A, Spielman I B 2013 New J. Phys. 15 073011
Google Scholar
[37] Beeler M C, Williams R A, Garcia K J, LeBlanc L J, Perry A R, Spielman I B 2013 Nature 498 201
[38] Kennedy C J, Siviloglou G A, Miyake H, Burton W C, Ketterle W 2013 Phys. Rev. Lett. 111 225301
Google Scholar
[39] Liu X J, Law K T, Ng T K 2014 Phys. Rev. Lett. 112 086401
Google Scholar
[40] Gong M, Tewari S, Zhang C 2011 Phys. Rev. Lett. 107 195303
Google Scholar
[41] Ho T L 1988 Phys. Rev. Lett. 81 742
[42] Ohmi T, Machida K 1998 J. Phys. Soc. Jpn. 67 1822
Google Scholar
[43] Law C K, Pu H, Bigelow N P 1998 Phys. Rev. Lett. 81 5257
Google Scholar
[44] Koashi M, Ueda M 2000 Phys. Rev. Lett. 84 1066
Google Scholar
[45] Ueda M, Koashi M 2002 Phys. Rev. A 65 063602
Google Scholar
[46] Ciobanu C V, Yip S K, Ho T L 2000 Phys. Rev. A 61 033607
Google Scholar
[47] Zhou F, Semenoff G W 2006 Phys. Rev. Lett. 97 180411
Google Scholar
[48] Santos L, Pfau T 2006 Phys. Rev. Lett. 96 190404
Google Scholar
[49] Diener R B, Ho T L 2006 Phys. Rev. Lett. 96 190405
Google Scholar
[50] Makela H, Suominen K A 2007 Phys. Rev. A 75 033610
Google Scholar
[51] Yip S K 2007 Phys. Rev. A 75 023625
Google Scholar
[52] 李吉 2018 博士学位论文 (北京: 中国科学院大学)
Li J 2018 Ph.D. Dissertation (Beijing: Chinese Academy of Sciences) (in Chinese)
[53] 靳晶晶 2014 博士学位论文 (太原: 山西大学)
Jin J J 2014 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[54] Modugno G, Modugno M, Riboli F, Roati G, Inguscio M 2002 Phys. Rev. Lett. 89 19040
[55] Papp S B, Pino J M, Wieman C E 2008 Phys. Rev. Lett. 101 040402
Google Scholar
[56] Schweikhard V, Coddington I, Engels P, Tung S, Cornell E A 2004 Phys. Rev. Lett. 93 210403
Google Scholar
[57] Leslie L S, Hansen A, Wright K C, Deutsch B M, Bigelow N P 2009 Phys. Rev. Lett. 103 250401
Google Scholar
[58] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E, Cornell E A 1999 Phys. Rev. Lett. 83 2498
Google Scholar
[59] Zhou F 2001 Phys. Rev. Lett. 87 080401
Google Scholar
[60] Yip S K 1999 Phys. Rev. Lett. 83 4677
Google Scholar
[61] Leonhardt U, Volovik G E 2000 JETP Lett. 72 46
Google Scholar
[62] Isoshima T, Machida K, Ohmi T 2001 J. Phys. Soc. Jpn. 70 1604
Google Scholar
[63] Makela H, Zhang Y, Suominen K A 2003 J. Phys. A: Math. Gen. 36 8555
[64] Semeno G W, Zhou F 2007 Phys. Rev. Lett. 98 100401
Google Scholar
[65] Kobayashi M, Kawaguchi Y, Nitta M, Ueda M 2009 Phys. Rev. Lett. 103 115301
Google Scholar
[66] Stoof H T C, Vliegen E, Khawaja U A 2001 Phys. Rev. Lett. 87 120407
Google Scholar
[67] Blaha S 1976 Phys. Rev. Lett. 36 874
Google Scholar
[68] Ruostekoshi J, Anglin J R 2003 Phys. Rev. Lett. 91 190402
Google Scholar
[69] Shankar R 1977 J. Phys. 38 1405
Google Scholar
[70] Volovik G E, Mineev V P 1976 Pis'ma Zh. Eksp. Teor. Fiz. 23 647
[71] Khawaja U A, Stoof H 2001 Nature 411 918
Google Scholar
[72] Kawaguchi Y, Nitta M, Ue da 2008 Phys. Rev. Lett. 100 180403
Google Scholar
[73] Jin J J, Zhang S Y, Han W 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165302
Google Scholar
[74] 刘静思 2017 博士学位论文 (北京: 中国科学院大学)
Liu J S 2017 Ph.D. Dissertation (Beijing: Chinese Academy of Sciences) (in Chinese)
[75] Eto M, Kasamatsu K, Nitta M, Taeuchi H, Tsubota M 2011 Phys. Rev. A 83 063603
Google Scholar
[76] Volovik G E 2000 Proc. Natl. Acad. Sci. USA 97 2431
[77] Liu C F, Liu W M 2017 Opt. Exp. 25 32800
Google Scholar
[78] Huhtamaki J A M, Simula T P, Kobayashi M 2009 Phys. Rev. A 80 051601
[79] Fert A, Cros V, Sampaio J 2013 Nature Nanotech. 8 152
Google Scholar
[80] Ray M W, Ruokokoski E, Kandel S, Möttönen M, Hall D S 2014 Nature 505 657
Google Scholar
[81] Ray M W, Ruokokoski E, Tiurev K, Möttönen M, Hall D S 2015 Science 348 544
Google Scholar
[82] Ruostekoski J, Anglin J R 2001 Phys. Rev. Lett. 86 3934
Google Scholar
[83] Kawakami T, Mizushima T, Nitta M, Machida K 2012 Phys. Rev. Lett. 109 015301
Google Scholar
[84] Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191
[85] Choi J Y, kwon W J, Shin Y I 2012 Phys. Rev. Lett. 108 035301
[86] Hall D S, Matthews M R, Ensher J R, Wieman C E, Cornell E A 1998 Phys. Rev. Lett. 81 1539
Google Scholar
[87] Madison K W, Chevy F, Wohlleben W, Dalibard J 2000 Phys. Rev. Lett. 84 806
[88] Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W, Cornell E A 2001 Phys. Rev. Lett. 86 2926
Google Scholar
[89] Hall D S, Ray M W, Tiurev K, Ruokokoski E, Gheorghe A H, Möttönen M 2016 Nat. Phys. 12 478
Google Scholar
[90] Leanhardt A E, Gorlitz A, Chikkatur A P 1999 Phys. Rev. Lett. 89 190403
[91] Battye R A, Cooper N R, Sutcliffe P M 2002 Phys. Rev. Lett. 88 080401
Google Scholar
[92] Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. Lett. 88 090404
Google Scholar
[93] Kasamatsu K, Tsubota M 2004 Phys. Rev. Lett. 93 100402
Google Scholar
[94] Wang C J, Cao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403
Google Scholar
[95] Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401
Google Scholar
[96] Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402
Google Scholar
[97] Xu X Q, Han J H 2011 Phys. Rev. Lett. 107 200401
Google Scholar
[98] Zhou X F, Zhou J, Wu C J 2011 Phys. Rev. A 84 063624
Google Scholar
[99] Liu C F, Fan H, Zhang Y C, Wang D S, Liu W M 2012 Phys. Rev. A 86 053616
Google Scholar
[100] Wang X, Tan R B, Du Z J, Zhao W Y, Zhang X F, Zhang S G 2014 Chin. Phys. B 23 070308
Google Scholar
[101] Fetter A L 2014 Phys. Rev. A 89 023629
Google Scholar
[102] Sakaguchi H, Umeda K 2016 J. Phys. Soc. Jpn. 85 064402
Google Scholar
[103] Sakaguchi H 2017 Phys. Rev. A 96 043620
Google Scholar
[104] Wang H, Wen L H, Yang H, Shi C X, Li J H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 155301
Google Scholar
[105] Kato M, Zhang X F, Saito H 2017 Phys. Rev. A 95 043605
Google Scholar
[106] Shi C X, Wen L H, Wang Q B, Yang H, Wang H 2018 J. Phys. Soc. Jpn. 87 094003
Google Scholar
[107] 李吉, 刘伍明 2018 67 110302
Google Scholar
Li J, Liu W M 2018 Acta Phys. Sin. 67 110302
Google Scholar
[108] Pu H, Raghavan S, Bigelow N P 2001 Phys. Rev. A 63 063603
Google Scholar
[109] Ogawa S I, Möttöen M, Nakahara M, Ohmi T, Shimada H 2002 Phys. Rev. A 66 013617
Google Scholar
[110] Itin A P, Morishita T, Satoh M, Tolstikhin O I, Watanabe S 2006 Phys. Rev. A 73 063615
Google Scholar
[111] Isoshima T, Machida K 2002 Phys. Rev. A 66 053610
Google Scholar
[112] Mizushima T, Machida K, Kita T 2002 Phys. Rev. Lett. 89 030401
Google Scholar
[113] Saito H, Kawaguchi Y, Ueda M 2006 Phys. Rev. Lett. 96 065302
Google Scholar
[114] Saito H, Kawaguchi Y, Ueda M 2007 Phys. Rev. A 75 013621
[115] Turner A M 2009 Phys. Rev. Lett. 103 080603
Google Scholar
[116] Pietila V, Möttönen M, Virtanen S M 2007 Phys. Rev. A 76 023610
Google Scholar
[117] Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402
Google Scholar
[118] Liu C F, Liu W M 2012 Phys. Rev. A 86 033602
Google Scholar
[119] 刘超飞 万文娟 张赣源 2013 62 200306
Google Scholar
Liu C F, Wan W J, Zhang G Y 2013 Acta Phys. Sin. 62 200306
Google Scholar
[120] Song S W, Zhang Y C, Zhao H, Wang Xuan, Liu W M 2014 Phys. Rev. A 89 063613
Google Scholar
[121] Lovegrove J, Borgh M O, Ruostekoski 2014 Phys. Rev. Lett. 112 075301
Google Scholar
[122] Zhao D, Song S W, Wen L, Li Z D, Luo H G, Liu W M 2015 Phys. Rev. A 91 013619
Google Scholar
[123] Gautam S, Adhikari S K 2016 Phys. Rev. A 93 013630
Google Scholar
[124] 刘静思 李吉 刘伍明 2017 66 130305
Google Scholar
Liu J S, Li J, Liu W M 2017 Acta Phys. Sin. 66 130305
Google Scholar
[125] Li J, Yu Y M, Zhuang L, Liu W M 2017 Phys. Rev. A 95 043633
Google Scholar
-
图 1 光势阱中F = 1 23Na凝聚体的超精细态[16]. (a) 250 ms时光势阱中钠原子的吸收图像; (b) 340 ms时光势阱中钠原子的吸收图像
Fig. 1. Optical trapping of 23Na condensates in all F = 1 hyperfine states: shown are absorption images after (a) 250 ms and (b) 340 ms of optical confinement.
图 2 铷原子云在Stern-Gerlach梯度磁场中自由膨胀10 ms后的吸收图像[17]. 从下到上分别是F = 1, mF = (–1, 0, 1)凝聚体的三个分量
Fig. 2. Absorptive image of Rb atomic cloud after 10 ms free expansion in a Stern-Gerlach magnetic field gradient. Three distinct components are observed corresponding to F = 1, mF = (–1, 0, 1) spin projections from bottom to top, respectively.
图 3 赝自旋密度Sz, Sx, Sy的空间分布[73] (a)−(c)表示旋转角频率为0; (d)自旋纹理投影到x-y平面内的矢量表示
Fig. 3. The pseudospin density distribution for (a) Sz, (b) Sx and (c) Sy for Ω = 0; (d) the vectorial representation of the spin texture projected onto the x-y plane.
图 4 自旋1 BEC中半量子涡旋的近似解和相应的奇异自旋纹理[77] (a)和(b)对应
$\left| {F = 1, {{{m}}_{\rm F}} = 0} \right\rangle $ 和$\left| {F = 1, {{{m}}_{\rm F}} = - 1} \right\rangle $ 分量的密度; (c)和(d)是对应的相; (e)为半量子涡旋的分布; (f)|S|自旋密度; (g) |S|自旋密度分布; (h)自旋纹理; (i)拓扑荷密度$q\left( {x, y} \right)$ Fig. 4. Approximate half-quantum vortex solution in the spin-1 BEC and the corresponding singular spin texture: (a) and (b) are the densities of the
$\left| {F = 1, {m_{\rm F}} = 0} \right\rangle $ 和$\left| {F = 1, {m_F} = - 1} \right\rangle $ components, respectively; (c) and (d) are the corresponding phases; (e) shows the profile of the half-quantum vortex; (f) spin density|S|; (g) the profile of the spin density|S|; (h) spin texture; (i) topological charge density$q\left( {x, y} \right)$ .图 5 两种常见的二维skyrmions的矢量场构型[79] (a) 豪猪型skyrmion; (b) 螺旋型skyrmion
Fig. 5. Two common vector field configurations of two-dimensional skyrmions: (a) The hedgehog type skyrmion; (b) the spiral type skyrmion.
图 6 稳定的三维skyrmions在x-y和z-x平面的空间分布[83] (a)中的箭头和颜色分别表示贋自旋方向和OP的U(1)相分布. 彩图(b)和(c)分别表示
$\left| {{\varPsi _ \uparrow }\left( {\rm{r}} \right)} \right|$ 和$\left| {{\Psi _ \downarrow }\left( {\rm{r}} \right)} \right|$ 的振幅Fig. 6. The spatial profile of the stable 3D skyrmions in the x-y and z-x planes: The arrows and their colors in (a) indicate the pseudospin direction and the U(1) phase of the OP, respectively; the color maps of (b) and (c) give the amplitudes
$\left| {{\varPsi _ \uparrow }\left( {\rm{r}} \right)} \right|$ and$\left| {{\varPsi _ \downarrow }\left( {\rm{r}} \right)} \right|$ , respectively.图 7 四极场作用下球形光势阱中扭结产生的动力学过程[85]. 上一行表示
${{\hat d}} = {\left( {0, 0, - 1} \right)^{\rm{T}}}$ 和${{\hat d}}$ = (1, 0, 0)T的图像快照, 下一行表示x-y平面上m = –1分量的密度截面Fig. 7. Dynamics of the creation of knots in a spherical optical trap under a quadrupole magnetic field. Snapshots of the preimages of
${{\hat d}}$ = (0, 0, –1)T and${{\hat d}}$ = (1, 0, 0)T(top), and the cross sections of the density for the m = –1 components on the x–y plane (bottom).图 8 扭结孤子的结构及其产生方法[89] (a)和(b)为扭结形成之前和形成过程中磁感应线的示意图, 绿色椭圆为对应的凝聚体; (c)和(d)显示扭结形成时, 最初的z方向的向列相矢量(黑色箭头)沿着局部磁场(青色线)的方向进动, 以实现最终的结构(彩色箭头). 灰色虚线表示dz = 0, 白线表示孤子核(dz = –1), 深灰色线表示体积V (dz = 1)的边界; (e)表示实空间中扭结孤子的构型及其与S2中向列矢量
${{\hat d}}$ 的关系Fig. 8. Structure of the knot soliton and the method of its creation: Schematic magnetic field lines before (a) and during (b) the knot formation, with respect to the condensate (green ellipse); (c), (d) as the knot is tied, the initially z-pointing nematic vector (black arrows) precesses about the direction of the local magnetic field (cyan lines) to achieve the final configuration (coloured arrows); the dashed grey line shows where dz = 0, the white line indicates the soliton core (dz = –1), and the dark grey line defines the boundary of the volume V (dz= 1); (e) the knot soliton configuration in real space and its relation to the nematic vector
${{\hat d}}$ in S2 (inset).图 9 Skyrmions的类型(λ = 0.5)[99] (a)−(h)表示自旋矢量的模式: (a)径向-向外skyrmion, (b)径向-向内skyrmion, (c)环形skyrmion, (d)双曲skyrmion, (e)双曲-径向向外skyrmion, (f)双曲-径向向内skyrmion, (g)环形-双曲skyrmion-I, (h)环形-双曲skyrmion-II
Fig. 9. Configuration of the skyrmion where λ = 0.5: The (a)−(h) figures indicate the mode of the spin vectors: (a) radial-out skyrmion, (b) radial-in skyrmion, (c) circular skyrmion, (d) hyperbolic skyrmion, (e) hyperbolic-radial(out) skyrmion, (f) hyperbolic-radial (in) skyrmion, (g) circular-hyperbolic skyrmion-I, and (h) circular-hyperbolic skyrmion-II[99].
图 10 不同自旋-轨道耦合强度下梯度磁场中两分量87RbBEC基态粒子数密度分布(第1、2列)和相位分布(第3、4列)[107] (a)−(d)的
${\tilde {\rm{\kappa}} }$ 值分别为0, 0.2, 0.8, 2Fig. 10. Particle number densities (the first and second columns) and phase distributions (the third and fourth columns) of ground state of the two-component BEC of 87Rb for the different spin-orbit coupling strengths: the parameters of
${\tilde {\rm{\kappa}} }$ in (a)−(d) are 0, 0.2, 0.8, 2, respectively[107].图 12 狄拉克磁单极子的实验产生[80] (a)−(f)每一行都包含单个凝聚体的图像. 最左边的列显示了三种自旋状态
$\left\{ {\left| 1 \right\rangle, \left| 0 \right\rangle, \left| { - 1} \right\rangle } \right\}$ 沿水平轴的柱状密度彩色图像; 最右边三列显示沿纵轴拍摄的图像Fig. 12. Experimental creation of Dirac monopoles. Each row (a)−(f) contains images of an individual condensate. The leftmost column shows colour composite images of the column densities taken along the horizontal axis for the three spin states
$\left\{ {\left| 1 \right\rangle, \left| 0 \right\rangle, \left| { - 1} \right\rangle } \right\}$ ; The rightmost three columns show images taken along the vertical axis[80].图 13 旋转频率对23Na旋量BEC的影响[118], 其中
${\mu _{j, 0}}\left( {j = 0, \pm 1} \right) = 3.6\;\hbar {\rm{\omega }}$ ,${\text{μ}} = 25\;\hbar {\rm{\omega }}$ , κx = κy = κz = 1,${a_0} = 50\;{a_{\rm{B}}}$ , and a2 = 55 aB (a) Ω = 0; (b) Ω = 0.2 ω; (c) Ω = 0.5 ω. 第四列显示了相应的自旋纹理和涡旋的位置Fig. 13. The effect of rotation frequency for spinor BEC of 23Na with
${\mu _{j, 0}}\left( {j = 0, \pm 1} \right) = 3.6\;\hbar {\rm{\omega }}$ ,${\rm{\mu }} = 25\;\hbar {\rm{\omega }}$ , κx = κy = κz = 1,${a_0} = 50\;{a_{\rm{B}}}$ , and a2 = 55 aB: (a) Ω = 0; (b) Ω = 0.2 ω; (c) Ω = 0.5 ω. The fourth column shows the corresponding spin textures and the positions of the vortices[118].图 14 具有Mermin-Ho涡旋的磁单极子[125] (a)等值面的粒子数密度; (b)粒子数密度等深线段(y ≤ 0), 节点线(Dirac线)的位置用红色箭头突出显示; (c) z=0平面上的位相分布. 单涡旋(mF = 0)和双涡旋(mF = –1)具有相同的环流, 由红圈突出显示
Fig. 14. The monopoles with the Mermin-Ho vortex: (a) Isosurface of particle densities; (b) segments of isosurface of particle densities (y ≤ 0). the position of the nodal line (Dirac string) is highlighted by the red arrow; (c) phase distributions in the z = 0 planes. the single vortex (mF = 0) and double vortex (mF = –1) have the same circulations, as highlighted by the red circles[125].
表 1 同伦群描述的拓扑缺陷结构
Table 1. Topological defect structures described by homotopy groups.
πn 缺陷 孤子 π0 磁畴壁 暗孤子 π1 涡旋 非奇异磁畴壁 π2 磁单极 二维skyrmions π3 skyrmions, 扭结 π4 瞬子 -
[1] Coen S, Haelterman M 2001 Phys. Rev. Lett. 87 140401
Google Scholar
[2] Williams J E, Holland M J 1999 Nature 401 568
Google Scholar
[3] Abo-Shaeer J R, Raman C, Vogels J M, Ketterle W 2001 Science 292 476
Google Scholar
[4] Leanhardt A E, Shin Y, Kielpinski D, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 140403
Google Scholar
[5] Sadler L E, Higbie J M, Leslie S R, Vengalattore M, Stamper-Kurn D M 2006 Nature 443 312
Google Scholar
[6] Alan L M, John V P, William D P 1985 Phys. Rev. Lett. 54 2596
Google Scholar
[7] Reichel J, Hansel W, Hansch T W 1999 Phys. Rev. Lett. 83 3398
Google Scholar
[8] Wolfgang P, Michael H A, Jason R E 1995 Phys. Rev. Lett. 74 3352
Google Scholar
[9] Pethick C, Smith H 2008 Bose-Einstein Condensation in Dilute Gases (UK: Cambridge Univ. Press) p569-584
[10] Pitaevskii L, Stringari S 2002 Bose-Einstein Condensation(Oxford: Clarendon Press)p382-395
[11] Stenger J, Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H J, Ketterle W 1998 J. Low Temp. Phys. 113 167
Google Scholar
[12] Bloch I, Dali bard J, Zwerger W 2008 Rev. Mod. Phys. 80 885
Google Scholar
[13] Stenger J, Inouye S, Stamper-Kurn D M, Miesner H-J, Chikkatur A P, Ketterle W 1988 Nature 396 345
[14] Kawaguchi Y, Ueda M 2012 Phys. Rep. 520 253
Google Scholar
[15] Weiler C N, Neely T W, Scherer D R, Bradley A S, Davis M J, Anderson B P 2008 Nature 455 948
[16] Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H-J, Stenger J, Ketterle W 1998 Phys. Rev. Lett. 80 2027
Google Scholar
[17] Barrett M D, Sauer J A, Chapman M S 2001 Phys. Rev. Lett. 87 010404
Google Scholar
[18] Gustavson T L, leanhardt A E, Chikkatur A P 2003 Phys. Rev. Lett. 90 090401
Google Scholar
[19] Chang M S, Hamley C D, Barrett M D 2004 Phys. Rev. Lett. 92 140403
Google Scholar
[20] Schmaljohann H, Erhard M, Kronjager J 2004 Phys. Rev. Lett. 92 040402
Google Scholar
[21] Kuwamoto T, Araki K, Eno T 2004 Phys. Rev. A 69 063604
Google Scholar
[22] Pasquiou B, Marechal E, Vernac L 2012 Phys. Rev. Lett. 108 045307
Google Scholar
[23] Lin Y J, Jimenez G K, Spielman I B 2011 Nature 471 83
[24] Galitshi V, Spielman I B 2013 Nature 494 49
[25] Dalibard J, Gerbier F, Juzeliunas G, Ohberg P 2011 Rev. Mod. Phys. 83 1523
Google Scholar
[26] Zhai H 2012 Int. J. Mod. Phys. B 26 1230001
Google Scholar
[27] Goldman N, Juzeliunas G, Ohberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401
Google Scholar
[28] Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B 2012 Phys. Rev. Lett. 109 115301
Google Scholar
[29] Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H 2012 Phys. Rev. Lett. 109 095301
Google Scholar
[30] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
Google Scholar
[31] Liao R, Huang Z G, Lin X M, Fialko O 2014 Phys. Rev. A 89 063614
Google Scholar
[32] Bhat I A, Mithun T, Malomed B A, Porsezian K 2015 Phys. Rev. A 92 063606
Google Scholar
[33] Hu F Q, Wang J J, Yu Z F, Zhang A X, Xue J K 2016 Phys. Rev. E 93 022214
Google Scholar
[34] Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301
Google Scholar
[35] Qu C, Hamner C, Gong M, Zhang C, Engels P 2013 Phys. Rev. A 88 021604
Google Scholar
[36] Leblanc L J, Beeler M C, Garcia K J, Perry A R, Sugawa S, Williams R A, Spielman I B 2013 New J. Phys. 15 073011
Google Scholar
[37] Beeler M C, Williams R A, Garcia K J, LeBlanc L J, Perry A R, Spielman I B 2013 Nature 498 201
[38] Kennedy C J, Siviloglou G A, Miyake H, Burton W C, Ketterle W 2013 Phys. Rev. Lett. 111 225301
Google Scholar
[39] Liu X J, Law K T, Ng T K 2014 Phys. Rev. Lett. 112 086401
Google Scholar
[40] Gong M, Tewari S, Zhang C 2011 Phys. Rev. Lett. 107 195303
Google Scholar
[41] Ho T L 1988 Phys. Rev. Lett. 81 742
[42] Ohmi T, Machida K 1998 J. Phys. Soc. Jpn. 67 1822
Google Scholar
[43] Law C K, Pu H, Bigelow N P 1998 Phys. Rev. Lett. 81 5257
Google Scholar
[44] Koashi M, Ueda M 2000 Phys. Rev. Lett. 84 1066
Google Scholar
[45] Ueda M, Koashi M 2002 Phys. Rev. A 65 063602
Google Scholar
[46] Ciobanu C V, Yip S K, Ho T L 2000 Phys. Rev. A 61 033607
Google Scholar
[47] Zhou F, Semenoff G W 2006 Phys. Rev. Lett. 97 180411
Google Scholar
[48] Santos L, Pfau T 2006 Phys. Rev. Lett. 96 190404
Google Scholar
[49] Diener R B, Ho T L 2006 Phys. Rev. Lett. 96 190405
Google Scholar
[50] Makela H, Suominen K A 2007 Phys. Rev. A 75 033610
Google Scholar
[51] Yip S K 2007 Phys. Rev. A 75 023625
Google Scholar
[52] 李吉 2018 博士学位论文 (北京: 中国科学院大学)
Li J 2018 Ph.D. Dissertation (Beijing: Chinese Academy of Sciences) (in Chinese)
[53] 靳晶晶 2014 博士学位论文 (太原: 山西大学)
Jin J J 2014 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[54] Modugno G, Modugno M, Riboli F, Roati G, Inguscio M 2002 Phys. Rev. Lett. 89 19040
[55] Papp S B, Pino J M, Wieman C E 2008 Phys. Rev. Lett. 101 040402
Google Scholar
[56] Schweikhard V, Coddington I, Engels P, Tung S, Cornell E A 2004 Phys. Rev. Lett. 93 210403
Google Scholar
[57] Leslie L S, Hansen A, Wright K C, Deutsch B M, Bigelow N P 2009 Phys. Rev. Lett. 103 250401
Google Scholar
[58] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E, Cornell E A 1999 Phys. Rev. Lett. 83 2498
Google Scholar
[59] Zhou F 2001 Phys. Rev. Lett. 87 080401
Google Scholar
[60] Yip S K 1999 Phys. Rev. Lett. 83 4677
Google Scholar
[61] Leonhardt U, Volovik G E 2000 JETP Lett. 72 46
Google Scholar
[62] Isoshima T, Machida K, Ohmi T 2001 J. Phys. Soc. Jpn. 70 1604
Google Scholar
[63] Makela H, Zhang Y, Suominen K A 2003 J. Phys. A: Math. Gen. 36 8555
[64] Semeno G W, Zhou F 2007 Phys. Rev. Lett. 98 100401
Google Scholar
[65] Kobayashi M, Kawaguchi Y, Nitta M, Ueda M 2009 Phys. Rev. Lett. 103 115301
Google Scholar
[66] Stoof H T C, Vliegen E, Khawaja U A 2001 Phys. Rev. Lett. 87 120407
Google Scholar
[67] Blaha S 1976 Phys. Rev. Lett. 36 874
Google Scholar
[68] Ruostekoshi J, Anglin J R 2003 Phys. Rev. Lett. 91 190402
Google Scholar
[69] Shankar R 1977 J. Phys. 38 1405
Google Scholar
[70] Volovik G E, Mineev V P 1976 Pis'ma Zh. Eksp. Teor. Fiz. 23 647
[71] Khawaja U A, Stoof H 2001 Nature 411 918
Google Scholar
[72] Kawaguchi Y, Nitta M, Ue da 2008 Phys. Rev. Lett. 100 180403
Google Scholar
[73] Jin J J, Zhang S Y, Han W 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165302
Google Scholar
[74] 刘静思 2017 博士学位论文 (北京: 中国科学院大学)
Liu J S 2017 Ph.D. Dissertation (Beijing: Chinese Academy of Sciences) (in Chinese)
[75] Eto M, Kasamatsu K, Nitta M, Taeuchi H, Tsubota M 2011 Phys. Rev. A 83 063603
Google Scholar
[76] Volovik G E 2000 Proc. Natl. Acad. Sci. USA 97 2431
[77] Liu C F, Liu W M 2017 Opt. Exp. 25 32800
Google Scholar
[78] Huhtamaki J A M, Simula T P, Kobayashi M 2009 Phys. Rev. A 80 051601
[79] Fert A, Cros V, Sampaio J 2013 Nature Nanotech. 8 152
Google Scholar
[80] Ray M W, Ruokokoski E, Kandel S, Möttönen M, Hall D S 2014 Nature 505 657
Google Scholar
[81] Ray M W, Ruokokoski E, Tiurev K, Möttönen M, Hall D S 2015 Science 348 544
Google Scholar
[82] Ruostekoski J, Anglin J R 2001 Phys. Rev. Lett. 86 3934
Google Scholar
[83] Kawakami T, Mizushima T, Nitta M, Machida K 2012 Phys. Rev. Lett. 109 015301
Google Scholar
[84] Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191
[85] Choi J Y, kwon W J, Shin Y I 2012 Phys. Rev. Lett. 108 035301
[86] Hall D S, Matthews M R, Ensher J R, Wieman C E, Cornell E A 1998 Phys. Rev. Lett. 81 1539
Google Scholar
[87] Madison K W, Chevy F, Wohlleben W, Dalibard J 2000 Phys. Rev. Lett. 84 806
[88] Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W, Cornell E A 2001 Phys. Rev. Lett. 86 2926
Google Scholar
[89] Hall D S, Ray M W, Tiurev K, Ruokokoski E, Gheorghe A H, Möttönen M 2016 Nat. Phys. 12 478
Google Scholar
[90] Leanhardt A E, Gorlitz A, Chikkatur A P 1999 Phys. Rev. Lett. 89 190403
[91] Battye R A, Cooper N R, Sutcliffe P M 2002 Phys. Rev. Lett. 88 080401
Google Scholar
[92] Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. Lett. 88 090404
Google Scholar
[93] Kasamatsu K, Tsubota M 2004 Phys. Rev. Lett. 93 100402
Google Scholar
[94] Wang C J, Cao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403
Google Scholar
[95] Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401
Google Scholar
[96] Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402
Google Scholar
[97] Xu X Q, Han J H 2011 Phys. Rev. Lett. 107 200401
Google Scholar
[98] Zhou X F, Zhou J, Wu C J 2011 Phys. Rev. A 84 063624
Google Scholar
[99] Liu C F, Fan H, Zhang Y C, Wang D S, Liu W M 2012 Phys. Rev. A 86 053616
Google Scholar
[100] Wang X, Tan R B, Du Z J, Zhao W Y, Zhang X F, Zhang S G 2014 Chin. Phys. B 23 070308
Google Scholar
[101] Fetter A L 2014 Phys. Rev. A 89 023629
Google Scholar
[102] Sakaguchi H, Umeda K 2016 J. Phys. Soc. Jpn. 85 064402
Google Scholar
[103] Sakaguchi H 2017 Phys. Rev. A 96 043620
Google Scholar
[104] Wang H, Wen L H, Yang H, Shi C X, Li J H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 155301
Google Scholar
[105] Kato M, Zhang X F, Saito H 2017 Phys. Rev. A 95 043605
Google Scholar
[106] Shi C X, Wen L H, Wang Q B, Yang H, Wang H 2018 J. Phys. Soc. Jpn. 87 094003
Google Scholar
[107] 李吉, 刘伍明 2018 67 110302
Google Scholar
Li J, Liu W M 2018 Acta Phys. Sin. 67 110302
Google Scholar
[108] Pu H, Raghavan S, Bigelow N P 2001 Phys. Rev. A 63 063603
Google Scholar
[109] Ogawa S I, Möttöen M, Nakahara M, Ohmi T, Shimada H 2002 Phys. Rev. A 66 013617
Google Scholar
[110] Itin A P, Morishita T, Satoh M, Tolstikhin O I, Watanabe S 2006 Phys. Rev. A 73 063615
Google Scholar
[111] Isoshima T, Machida K 2002 Phys. Rev. A 66 053610
Google Scholar
[112] Mizushima T, Machida K, Kita T 2002 Phys. Rev. Lett. 89 030401
Google Scholar
[113] Saito H, Kawaguchi Y, Ueda M 2006 Phys. Rev. Lett. 96 065302
Google Scholar
[114] Saito H, Kawaguchi Y, Ueda M 2007 Phys. Rev. A 75 013621
[115] Turner A M 2009 Phys. Rev. Lett. 103 080603
Google Scholar
[116] Pietila V, Möttönen M, Virtanen S M 2007 Phys. Rev. A 76 023610
Google Scholar
[117] Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402
Google Scholar
[118] Liu C F, Liu W M 2012 Phys. Rev. A 86 033602
Google Scholar
[119] 刘超飞 万文娟 张赣源 2013 62 200306
Google Scholar
Liu C F, Wan W J, Zhang G Y 2013 Acta Phys. Sin. 62 200306
Google Scholar
[120] Song S W, Zhang Y C, Zhao H, Wang Xuan, Liu W M 2014 Phys. Rev. A 89 063613
Google Scholar
[121] Lovegrove J, Borgh M O, Ruostekoski 2014 Phys. Rev. Lett. 112 075301
Google Scholar
[122] Zhao D, Song S W, Wen L, Li Z D, Luo H G, Liu W M 2015 Phys. Rev. A 91 013619
Google Scholar
[123] Gautam S, Adhikari S K 2016 Phys. Rev. A 93 013630
Google Scholar
[124] 刘静思 李吉 刘伍明 2017 66 130305
Google Scholar
Liu J S, Li J, Liu W M 2017 Acta Phys. Sin. 66 130305
Google Scholar
[125] Li J, Yu Y M, Zhuang L, Liu W M 2017 Phys. Rev. A 95 043633
Google Scholar
计量
- 文章访问数: 15750
- PDF下载量: 493
- 被引次数: 0