-
随着量子通信和量子计算的快速发展, 人们对数据隐私保护和分布式量子信息处理的需求不断增高. 量子秘密共享作为经典秘密共享的量子延伸, 借助量子力学的基本原理, 可以在多方之间安全地共享信息, 提供了信息安全的新范式. 作为多方安全量子通信和分布式量子计算的重要基础, 量子秘密共享一经提出便受到了广泛关注. 当前, 量子秘密共享研究已经包含经典和量子的场景, 在理论与实验上不断取得新的进展. 但在实际应用中仍然面临着量子信道噪声、设备不完美及量子资源受限等诸多困难和挑战, 实用性和安全性仍然难以兼顾. 本文将简要介绍不同技术路线下量子秘密共享的研究现状, 总结近年来量子秘密共享的发展趋势, 并对其未来的发展方向进行讨论和展望.Quantum secret sharing (QSS), as a quantum extension of classical secret sharing, uses the basic principles of quantum mechanics to share information safely among multiple parties, providing a new paradigm for information security. As a key foundation for secure multiparty quantum communication and distributed quantum computing, QSS has attracted considerable attention since its emergence. Currently, research in this field includes both classical and quantum scenarios, and continuous progress has been made in both theoretical and experimental aspects. This paper first reviews the current development of QSS for classical information. In this regard, significant and parallel progress has been made in both discrete-variable QSS and continuous-variable QSS. The QSS protocols for sharing classical information, from entangled states to single photons and then to coherent light, have been continuously optimized to better utilize available resources and achieve more efficient implementation under current technological conditions. Meanwhile, round-robin, measurement-device-independent, and other protocols have been steadily improving the security of QSS. Next, one will focus on QSS scheme for quantum secrets, which begins with the symmetry of access structures and introduces basic (k, n) threshold protocols, dynamic schemes that support adaptive agent groups, and symmetric quantum information splitting through entanglement. It further introduces hierarchical quantum secret sharing schemes for asymmetric splitting of quantum information. Considering practical laboratory conditions of quantum states as resources, an overall discussion is conducted on quantum secret sharing with graph states. Afterwards, the design of a continuous-variable scheme for quantum secret sharing is outlined, and entanglement state sharing and quantum teleportation between multiple senders and receivers are introduced. Finally, this review discusses and outlines the future development directions of QSS, thereby inspiring readers to further study and explore the relevant subjects.
-
Keywords:
- quantum secret sharing /
- quantum communication /
- quantum entanglement /
- multiparty quantum protocols
-
表 1 三方测量结果的关联性
Table 1. Correlation of the measurement results from three parties.
Alice $ |+x\rangle $ $ |-x\rangle $ $ |+y\rangle $ $ |-y\rangle $ Bob $ |+x\rangle $ $ |+x\rangle $ $ |-x\rangle $ $ |-y\rangle $ $ |+y\rangle $ $ |-x\rangle $ $ |-x\rangle $ $ |+x\rangle $ $ |+y\rangle $ $ |-y\rangle $ $ |+y\rangle $ $ |-y\rangle $ $ |+y\rangle $ $ |-x\rangle $ $ |+x\rangle $ $ |-y\rangle $ $ |+y\rangle $ $ |-y\rangle $ $ |+x\rangle $ $ |-x\rangle $ 表 2 不同QSS方案的特点
Table 2. Characteristics of different QSS schemes.
QSS方案 特点 使用纠缠态的QSS 由于纠缠特性, 即使光源部分被攻击者控制, 只要测量端能够被完美表征并进行测量错误率即可获得安全的秘密共享. 但目前实验上高效制备纠缠态仍具有较大困难 使用单光子的QSS 相比于纠缠态, 单光子更容易制备和分发, 更具实验性和扩展性. 但仍与目前的通信光纤有适配性差异且容易受到特洛伊木马的攻击 使用相干光的QSS 实验实现简单, 与标准光纤适配更容易实现远距离传输, 具有高稳定性和易操作性. 但相干光存在多光子成分, 无法抵御光子数分裂攻击 离散变量的QSS 利用光子偏振态$ |H\rangle $和$ |V\rangle $或轨道角动量来编码密钥比特, 系统对损耗不敏感、测量和判别精度高. 但信道容量低、单光子制备困难 连续变量的QSS 利用光场的正交分量$ \hat{x} $和$ \hat{p} $来编码密钥比特, 相比于离散变量可以确定性实现. 但大多数方案要求独立激光源及激光源之间的信号同步, 并且易受到本振攻击 环回QSS 不用监测信号扰动, 密钥率能打破Pirandola-Laurenza-Ottaviani-Banchi界限. 但需要使用可变延迟马赫-曾德尔干涉仪限制了其实际应用 测量设备无关的QSS 能够消除测量端设备不完美带来的攻击风险, 有效增强系统的安全性. 但大多数协议传输效率仍然会随着用户数量的增加呈指数级下降 设备无关的QSS 能够消除所有实际不完美设备的安全漏洞. 但目前协议的性能仍然较低, 尚未有效实现 -
[1] Shamir A 1979 Communications of the ACM 22 612
Google Scholar
[2] Blakley G R 1979 In Managing requirements knowledge, international workshop on (IEEE Computer Society), pp 313–313
[3] Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, et al 2017 Nature 549 43
Google Scholar
[4] Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Y, Yin H L, Chen Z B 2022 PRX Quantum 3 020315
Google Scholar
[5] Gu J, Cao X Y, Fu Y, He Z W, Yin Z J, Yin H L, Chen Z B 2022 Sci. Bull. 67 2167
Google Scholar
[6] Yin H L, Fu Y, Li C L, Weng C X, Li B H, Gu J, Lu Y S, Huang S, Chen Z B 2023 Natl. Sci. Rev. 10 nwac228
Google Scholar
[7] Pan D, Long G L, Yin L, Sheng Y B, Ruan D, Ng S X, Lu J, Hanzo L 2024 IEEE Communications Surveys & Tutorials 26 1898
[8] Cao X Y, Li B H, Wang Y, Fu Y, Yin H L, Chen Z B 2024 Sci. Adv. 10 eadk3258
Google Scholar
[9] Jing X, Qian C, Weng C X, Li B H, Chen Z, Wang C Q, Tang J, Gu X W, Kong Y C, Chen T S, et al 2024 Sci. Adv. 10 eadp2877
Google Scholar
[10] Du Y, Li B H, Hua X, Cao X Y, Zhao Z, Xie F, Zhang Z, Yin H L, Xiao X, Wei K 2025 Light: Sci. Appl. 14 108
Google Scholar
[11] Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829
Google Scholar
[12] Cleve R, Gottesman D, Lo H K 1999 Phys. Rev. Lett. 83 648
Google Scholar
[13] Markham D, Sanders B C 2008 Phys. Rev. A 78 042309
Google Scholar
[14] Qin S J, Gao F, Wen Q Y, Zhu F C 2007 Phys. Rev. A 76 062324
Google Scholar
[15] Chen Y A, Zhang A N, Zhao Z, Zhou X Q, Lu C Y, Peng C Z, Yang T, Pan J W 2005 Phys. Rev. Lett. 95 200502
Google Scholar
[16] Tittel W, Zbinden H, Gisin N 2001 Phys. Rev. A 63 042301
Google Scholar
[17] Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59 162
Google Scholar
[18] Zhang Z j, Gao G, Wang X, Han L f, Shi S h 2007 Opt. Commun. 269 418
Google Scholar
[19] Williams B P, Lukens J M, Peters N A, Qi B, Grice W P 2019 Phys. Rev. A 99 062311
Google Scholar
[20] Sen A, Sen U, Żukowski M, et al 2003 Phys. Rev. A 68 032309
Google Scholar
[21] Gaertner S, Bourennane M, Eibl M, Kurtsiefer C, Weinfurter H 2003 Appl. Phys. B 77 803
Google Scholar
[22] Gaertner S, Kurtsiefer C, Bourennane M, Weinfurter H 2007 Phys. Rev. Lett. 98 020503
Google Scholar
[23] Yu I C, Lin F L, Huang C Y 2008 Phys. Rev. A 78 012344
Google Scholar
[24] Xiao L, Lu Long G, Deng F G, Pan J W 2004 Phys. Rev. A 69 052307
Google Scholar
[25] Xiao Y R, Jia Z Y, Song Y C, Bao Y, Fu Y, Yin H L, Chen Z B 2024 Opt. Lett. 49 4210
Google Scholar
[26] Ishio H, Minowa J, Nosu K 1984 J. Lightwave Technol. 2 448
Google Scholar
[27] Wengerowsky S, Joshi S K, Steinlechner F, Hübel H, Ursin R 2018 Nature 564 225
Google Scholar
[28] Bouwmeester D, Pan J W, Daniell M, Weinfurter H, Zeilinger A 1999 Phys. Rev. Lett. 82 1345
Google Scholar
[29] Pan J W, Daniell M, Gasparoni S, Weihs G, Zeilinger A 2001 Phys. Rev. Lett. 86 4435
Google Scholar
[30] Zhao Z, Yang T, Chen Y A, Zhang A N, Żukowski M, Pan J W 2003 Phys. Rev. Lett. 91 180401
Google Scholar
[31] Huang Y F, Liu B H, Peng L, Li Y H, Li L, Li C F, Guo G C 2011 Nat. Commun. 2 546
Google Scholar
[32] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777
Google Scholar
[33] Gisin N 2015 Front. Phys. 10 1
[34] Guo G P, Guo G C 2003 Phys. Lett. A 310 247
Google Scholar
[35] Deng F G, Zhou H Y, Long G L 2005 Phys. Lett. A 337 329
Google Scholar
[36] Han L F, Liu Y M, Liu J, Zhang Z J 2008 Opt. Commun. 281 2690
Google Scholar
[37] Wang T Y, Wen Q Y 2011 Quantum Inf. Comput. 11 434
[38] Schmid C, Trojek P, Bourennane M, Kurtsiefer C, Żukowski M, Weinfurter H 2005 Phys. Rev. Lett. 95 230505
Google Scholar
[39] Bogdanski J, Ahrens J, Bourennane M 2009 Opt. Express 17 1055
Google Scholar
[40] Kuzin E, Nunez H C, Korneev N 1999 Opt. Commun. 160 37
Google Scholar
[41] Hai-Qiang M, Ke-Jin W, Jian-Hui Y 2013 Opt. Lett. 38 4494
Google Scholar
[42] Deng F G, Li X H, Zhou H Y, Zhang Z j 2005 Phys. Rev. A 72 044302
Google Scholar
[43] He G P 2007 Phys. Rev. Lett. 98 028901
Google Scholar
[44] Lucamarini M, Choi I, Ward M B, Dynes J F, Yuan Z, Shields A J 2015 Phys. Rev. X 5 031030
[45] Tavakoli A, Herbauts I, Żukowski M, Bourennane M 2015 Phys. Rev. A 92 030302
Google Scholar
[46] Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X 2019 Light Sci. Appl. 8 90
Google Scholar
[47] Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nat. Photonics 9 796
Google Scholar
[48] Pinnell J, Nape I, de Oliveira M, TabeBordbar N, Forbes A 2020 Laser Photon. Rev. 14 2000012
Google Scholar
[49] Smania M, Elhassan A M, Tavakoli A, Bourennane M 2016 npj Quantum Inf. 2 1
[50] Brassard G, Lütkenhaus N, Mor T, Sanders B C 2000 Phys. Rev. Lett. 85 1330
Google Scholar
[51] Lütkenhaus N, Jahma M 2002 New J. Phys. 4 44
Google Scholar
[52] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
Google Scholar
[53] Wang X B 2005 Phys. Rev. Lett. 94 230503
Google Scholar
[54] Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94 230504
Google Scholar
[55] Inoue K, Waks E, Yamamoto Y 2003 Phys. Rev. A 68 022317
Google Scholar
[56] Inoue K, Ohashi T, Kukita T, Watanabe K, Hayashi S, Honjo T, Takesue H 2008 Opt. Express 16 15469
Google Scholar
[57] Gu J, Cao X Y, Yin H L, Chen Z B 2021 Opt. Express 29 9165
Google Scholar
[58] Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400
Google Scholar
[59] Curty M, Azuma K, Lo H K 2019 npj Quantum Inf. 5 64
Google Scholar
[60] Yin H L, Chen Z B 2019 Sci. Rep. 9 17113
Google Scholar
[61] Fröhlich B, Lucamarini M, Dynes J F, Comandar L C, Tam W W S, Plews A, Sharpe A W, Yuan Z, Shields A J 2017 Optica 4 163
Google Scholar
[62] Shen A, Cao X Y, Wang Y, Fu Y, Gu J, Liu W B, Weng C X, Yin H L, Chen Z B 2023 Sci. China Phys. Mech. Astron. 66 260311
Google Scholar
[63] Wang Y Z, Sun X R, Cao X Y, Yin H L, Chen Z B 2024 Phys. Rev. Appl. 22 044018
Google Scholar
[64] Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902
Google Scholar
[65] Tyc T, Sanders B C 2002 Phys. Rev. A 65 042310
Google Scholar
[66] Lance A M, Symul T, Bowen W P, Sanders B C, Lam P K 2004 Phys. Rev. Lett. 92 177903
Google Scholar
[67] Kogias I, Xiang Y, He Q, Adesso G 2017 Phys. Rev. A 95 012315
Google Scholar
[68] Zhou Y, Yu J, Yan Z, Jia X, Zhang J, Xie C, Peng K 2018 Phys. Rev. Lett. 121 150502
Google Scholar
[69] Horodecki M, Horodecki P, Horodecki R 1998 Phys. Rev. Lett. 80 5239
Google Scholar
[70] Shor P W, Smolin J A, Thapliyal A V 2003 Phys. Rev. Lett. 90 107901
Google Scholar
[71] Jia X, Zhang J, Wang Y, Zhao Y, Xie C, Peng K 2012 Phys. Rev. Lett. 108 190501
Google Scholar
[72] Lau H K, Weedbrook C 2013 Phys. Rev. A 88 042313
Google Scholar
[73] Wu Y, Zhou J, Gong X, Guo Y, Zhang Z M, He G 2016 Phys. Rev. A 93 022325
Google Scholar
[74] Walk N, Eisert J 2021 PRX Quantum 2 040339
Google Scholar
[75] Grice W P, Qi B 2019 Phys. Rev. A 100 022339
Google Scholar
[76] Wu X, Wang Y, Huang D 2020 Phys. Rev. A 101 022301
Google Scholar
[77] Liao Q, Liu H, Zhu L, Guo Y 2021 Phys. Rev. A 103 032410
Google Scholar
[78] Liao Q, Liu X, Ou B, Fu X 2023 IEEE Trans. Commun. 71 6051
Google Scholar
[79] Liao Q, Liu H, Gong Y, Wang Z, Peng Q, Guo Y 2022 Opt. Express 30 3876
Google Scholar
[80] Huang D, Huang P, Wang T, Li H, Zhou Y, Zeng G 2016 Phys. Rev. A 94 032305
Google Scholar
[81] Liao Q, Fei Z, Huang L, Fu X 2025 Commun. Phys. 8 138
Google Scholar
[82] Shen Y, Zou H, Tian L, Chen P, Yuan J 2010 Phys. Rev. A 82 022317
Google Scholar
[83] Liu S, Lu Z, Wang P, Tian Y, Wang X, Li Y 2023 npj Quantum Inf. 9 92
Google Scholar
[84] Murta G, Grasselli F, Kampermann H, Bruß D 2020 Adv. Quantum Technol. 3 2000025
Google Scholar
[85] Cao X Y, Gu J, Lu Y S, Yin H L, Chen Z B 2021 New J. Phys. 23 043002
Google Scholar
[86] Proietti M, Ho J, Grasselli F, Barrow P, Malik M, Fedrizzi A 2021 Sci. Adv. 7 eabe0395
Google Scholar
[87] Richter S, Thornton M, Khan I, Scott H, Jaksch K, Vogl U, Stiller B, Leuchs G, Marquardt C, Korolkova N 2021 Phys. Rev. X 11 011038
[88] Zhang Y F, Liu W B, Li B H, Yin H L, Chen Z B 2024 Phys. Rev. A 110 052613
Google Scholar
[89] Diamanti E, Leverrier A 2015 Entropy 17 6072
Google Scholar
[90] Liu W B, Li C L, Xie Y M, Weng C X, Gu J, Cao X Y, Lu Y S, Li B H, Yin H L, Chen Z B 2021 PRX Quantum 2 40334
Google Scholar
[91] Li S G, Li C L, Liu W B, Yin H L, Chen Z B 2024 Adv. Quantum Technol. 7 2400140
Google Scholar
[92] Gu J, Xie Y M, Liu W B, Fu Y, Yin H L, Chen Z B 2021 Opt. Express 29 32244
Google Scholar
[93] Sasaki T, Yamamoto Y, Koashi M 2014 Nature 509 475
Google Scholar
[94] Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043
Google Scholar
[95] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V 2010 Nat. Photonics 4 686
Google Scholar
[96] Makarov V 2009 New J. Phys. 11 065003
Google Scholar
[97] Qin H, Kumar R, Makarov V, Alléaume R 2018 Phys. Rev. A 98 012312
Google Scholar
[98] Qi B, Fung C H F, Lo H K, Ma X 2007 Quantum Inf. Comput.
[99] Huang J Z, Weedbrook C, Yin Z Q, Wang S, Li H W, Chen W, Guo G C, Han Z F 2013 Phys. Rev. A 87 062329
Google Scholar
[100] Wei K, Zhang W, Tang Y L, You L, Xu F 2019 Phys. Rev. A 100 022325
Google Scholar
[101] Qin H, Kumar R, Alléaume R 2016 Phys. Rev. A 94 012325
Google Scholar
[102] Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002
Google Scholar
[103] Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503
Google Scholar
[104] Fu Y, Yin H L, Chen T Y, Chen Z B 2015 Phys. Rev. Lett. 114 090501
Google Scholar
[105] Ma X, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326
Google Scholar
[106] Gao Z, Li T, Li Z 2020 Sci. China Phys. Mech. Astron. 63 120311
Google Scholar
[107] Yang Y G, Wang Y C, Yang Y L, Chen X B, Li D, Zhou Y H, Shi W M 2021 Sci. China Phys. Mech. Astron. 64 260321
Google Scholar
[108] Liu T, Lai J, Li Z, Li T 2025 Phys. Rev. Appl. 23 034057
Google Scholar
[109] Zhang C, Zhang Q, Zhong W, Du M M, Shen S T, Li X Y, Zhang A L, Zhou L, Sheng Y B 2025 Phys. Rev. A 111 012602
Google Scholar
[110] Liao Q, Huang L, Fei Z Y, Fu X Q Adv. Quantum Technol. 2400505
[111] Wang Y, Tian C, Su Q, Wang M, Su X 2019 Science China Information Sciences 62 1
[112] Li C L, Fu Y, Liu W B, Xie Y M, Li B H, Zhou M G, Yin H L, Chen Z B 2023 Phys. Rev. Res. 5 033077
Google Scholar
[113] Azuma K, Tamaki K, Lo H K 2015 Nat. Commun. 6 1
[114] Roy S, Mukhopadhyay S 2019 Phys. Rev. A 100 012319
Google Scholar
[115] Zhang Q, Zhong W, Du M M, Shen S T, Li X Y, Zhang A L, Zhou L, Sheng Y B 2024 Phys. Rev. A 110 042403
Google Scholar
[116] Zhang Q, Ying J W, Wang Z J, Zhong W, Du M M, Shen S T, Li X Y, Zhang A L, Gu S P, Wang X F, et al 2025 Phys. Rev. A 111 012603
Google Scholar
[117] Zhang Z, Yuan C, Shen S, Yu H, Zhang R, Wang H, Li H, Wang Y, Deng G, Wang Z, et al 2021 npj Quantum Inf. 7 123
Google Scholar
[118] Chen X, Fu Z, Gong Q, Wang J 2021 Adv. Photon. 3 064002
[119] Chopin A, Barone A, Ghorbel I, Combrié S, Bajoni D, Raineri F, Galli M, De Rossi A 2023 Commun. Phys. 6 77
Google Scholar
[120] Chen S, Peng L C, Guo Y P, Gu X M, Ding X, Liu R Z, Zhao J Y, You X, Qin J, Wang Y F, et al 2024 Phys. Rev. Lett. 132 130603
Google Scholar
[121] Huang J, Mao J, Li X, Yuan J, Zheng Y, Zhai C, Dai T, Fu Z, Bao J, Yang Y, et al 2025 Nat. Photonics 1
[122] Nemirovsky-Levy L, Pereg U, Segev M 2024 Optica Quantum 2 165
Google Scholar
[123] Yan P S, Zhou L, Zhong W, Sheng Y B 2023 Sci. China Phys. Mech. Astron. 66 250301
Google Scholar
[124] Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Zhang C, Xing W B, Huang Y F, Li C F, et al 2021 Phys. Rev. Lett. 126 010503
Google Scholar
[125] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895
Google Scholar
[126] Senthoor K, Sarvepalli P K 2022 IEEE Transactions on Information Theory 68 3164
Google Scholar
[127] Yang Y G, Wang Y, Chai H P, Teng Y W, Zhang H 2011 Opt. Commun. 284 3479
Google Scholar
[128] Jia H Y, Wen Q Y, Gao F, Qin S J, Guo F Z 2012 Phys. Lett. A 376 1035
Google Scholar
[129] Sun Y, Xu S W, Chen X B, Niu X X, Yang Y X 2013 Quantum Inf. Process. 12 2877
Google Scholar
[130] Li Y, Zhang K, Peng K 2004 Phys. Lett. A 324 420
Google Scholar
[131] Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2005 Phys. Rev. A 72 044301
Google Scholar
[132] Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2006 Eur. Phys. J. D 39 459
Google Scholar
[133] Yuan H, Liu Y M, Zhang W, Zhang Z J 2008 J. Phys. B 41 145506
Google Scholar
[134] Shi R h, Huang L s, Yang W, Zhong H 2011 Quantum Inf. Process. 10 231
Google Scholar
[135] Pathak A, Banerjee A 2011 Int. J. Quantum Inf. 09 389
Google Scholar
[136] Muralidharan S, Panigrahi P K 2008 Phys. Rev. A 78 062333
Google Scholar
[137] Nie Y y, Li Y h, Liu J c, Sang M h 2011 Opt. Commun. 284 1457
Google Scholar
[138] Roos C F, Riebe M, Häffner H, Hänsel W, Benhelm J, Lancaster G P T, Becher C, Schmidt-Kaler F, Blatt R 2004 Science 304 1478
Google Scholar
[139] Agrawal P, Pati A 2006 Phys. Rev. A 74 062320
Google Scholar
[140] Gottesman D 2000 Phys. Rev. A 61 42311
Google Scholar
[141] Wang X W, Xia L X, Wang Z Y, Zhang D Y 2010 Opt. Commun. 283 1196
Google Scholar
[142] Wang X W, Zhang D Y, Tang S Q, Zhan X G, You K M 2010 Int. J. Theor. Phys. 49 2691
Google Scholar
[143] Wang X W, Zhang D Y, Tang S Q, Xie L J 2011 J. Phys. B 44 35505
Google Scholar
[144] Shukla C, Pathak A 2013 Phys. Lett. A 377 1337
Google Scholar
[145] Chandran L S, Gajjala R 2024 Quantum 8 1396
Google Scholar
[146] Kashefi E, Markham D, Mhalla M, Perdrix S 2009 Electronic Proceedings in Theoretical Computer Science 9 87
Google Scholar
[147] Javelle J, Mhalla M, Perdrix S 2013 New Protocols and Lower Bounds for Quantum Secret Sharing with Graph States (Springer Berlin Heidelberg), p 1–12
[148] Gravier S, Javelle J, Mhalla M, Perdrix S 2013 In Hutchison D, Kanade T, Kittler J, Kleinberg J M, Mattern F, Mitchell J C, Naor M, Nierstrasz O, Pandu Rangan C, Steffen B, Sudan M, Terzopoulos D, Tygar D, Vardi M Y, Weikum G, Kučera A, Henzinger T A, Nešetřil J, Vojnar T, Antoš D, editors, Mathematical and Engineering Methods in Computer Science, vol. 7721 (Berlin, Heidelberg: Springer Berlin Heidelberg), pp 15–31
[149] Keet A, Fortescue B, Markham D, Sanders B C 2010 Phys. Rev. A 82 62315
Google Scholar
[150] Bell B, Markham D, Herrera-Martí D, Marin A, Wadsworth W, Rarity J, Tame M 2014 Nat. Commun. 5 1
[151] Bell B A, Herrera-Martí D A, Tame M S, Markham D, Wadsworth W J, Rarity J G 2014 Nat. Commun. 5 3658
Google Scholar
[152] Cooper E S, Kunkel P, Periwal A, Schleier-Smith M 2024 Nat. Phys. 20 770
Google Scholar
[153] Thomas P, Ruscio L, Morin O, Rempe G 2024 Nature 629 567
Google Scholar
[154] Huang J, Chen X, Li X, Wang J 2023 AAPPS Bulletin 33 14
Google Scholar
[155] Lance A M, Symul T, Bowen W P, Tyc T, Sanders B C, Lam P K 2003 New J. Phys. 5 4
Google Scholar
[156] Lance A M, Symul T, Bowen W P, Sanders B C, Tyc T, Ralph T C, Lam P K 2005 Phys. Rev. A 71 033814
Google Scholar
[157] Chen Y, Zhu Q, Wang X, Lou Y, Liu S, Jing J 2023 Adv. Photon. 5 026006
[158] Lu H, Zhang Z, Chen L K, Li Z D, Liu C, Li L, Liu N L, Ma X, Chen Y A, Pan J W 2016 Phys. Rev. Lett. 117 030501
Google Scholar
[159] Lee S M, Lee S W, Jeong H, Park H S 2020 Phys. Rev. Lett. 124 060501
Google Scholar
[160] Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932
Google Scholar
[161] Azuma K, Economou S E, Elkouss D, Hilaire P, Jiang L, Lo H K, Tzitrin I 2023 Rev. Mod. Phys. 95 045006
Google Scholar
[162] Li C L, Yin H L, Chen Z B 2024 Rep. Prog. Phys. 87 127901
Google Scholar
[163] Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 42317
Google Scholar
[164] Tian Y, Wang J, Bian G, Chang J, Li J 2024 Adv Quantum Tech 7 2400116
Google Scholar
[165] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S, Sanpera A 1996 Phys. Rev. Lett. 77 2818
Google Scholar
[166] And A 2012 Commun. Theor. Phys. 58 661
Google Scholar
[167] Gupta S, Sinha A, Pandey S K 2024 Quantum Inf. Process. 23 58
Google Scholar
计量
- 文章访问数: 77
- PDF下载量: 3
- 被引次数: 0