搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子秘密共享研究现状与展望

尹华磊 沈建宇 陈诺 陈增兵

引用本文:
Citation:

量子秘密共享研究现状与展望

尹华磊, 沈建宇, 陈诺, 陈增兵

Research status and prospects of quantum secret sharing

Yin Hua-Lei, Shen Jian-Yu, Chen Nuo, Chen Zeng-Bing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 随着量子通信和量子计算的快速发展, 人们对数据隐私保护和分布式量子信息处理的需求不断增高. 量子秘密共享作为经典秘密共享的量子延伸, 借助量子力学的基本原理, 可以在多方之间安全地共享信息, 提供了信息安全的新范式. 作为多方安全量子通信和分布式量子计算的重要基础, 量子秘密共享一经提出便受到了广泛关注. 当前, 量子秘密共享研究已经包含经典和量子的场景, 在理论与实验上不断取得新的进展. 但在实际应用中仍然面临着量子信道噪声、设备不完美及量子资源受限等诸多困难和挑战, 实用性和安全性仍然难以兼顾. 本文将简要介绍不同技术路线下量子秘密共享的研究现状, 总结近年来量子秘密共享的发展趋势, 并对其未来的发展方向进行讨论和展望.
    Quantum secret sharing (QSS), as a quantum extension of classical secret sharing, uses the basic principles of quantum mechanics to share information safely among multiple parties, providing a new paradigm for information security. As a key foundation for secure multiparty quantum communication and distributed quantum computing, QSS has attracted considerable attention since its emergence. Currently, research in this field includes both classical and quantum scenarios, and continuous progress has been made in both theoretical and experimental aspects. This paper first reviews the current development of QSS for classical information. In this regard, significant and parallel progress has been made in both discrete-variable QSS and continuous-variable QSS. The QSS protocols for sharing classical information, from entangled states to single photons and then to coherent light, have been continuously optimized to better utilize available resources and achieve more efficient implementation under current technological conditions. Meanwhile, round-robin, measurement-device-independent, and other protocols have been steadily improving the security of QSS. Next, one will focus on QSS scheme for quantum secrets, which begins with the symmetry of access structures and introduces basic (k, n) threshold protocols, dynamic schemes that support adaptive agent groups, and symmetric quantum information splitting through entanglement. It further introduces hierarchical quantum secret sharing schemes for asymmetric splitting of quantum information. Considering practical laboratory conditions of quantum states as resources, an overall discussion is conducted on quantum secret sharing with graph states. Afterwards, the design of a continuous-variable scheme for quantum secret sharing is outlined, and entanglement state sharing and quantum teleportation between multiple senders and receivers are introduced. Finally, this review discusses and outlines the future development directions of QSS, thereby inspiring readers to further study and explore the relevant subjects.
  • 图 1  QSS协议的类型

    Fig. 1.  Types of QSS protocol.

    图 2  偏振纠缠光子源示意图[19]

    Fig. 2.  Schematic of the polarization-entangled photon source[19].

    图 3  实现高维单qudit QSS的两种方法 (a)使用光子轨道角动量[48]; (b)使用多臂类马赫-曾德尔干涉仪[49]

    Fig. 3.  Two methods for achieving high-dimensional single-qudit QSS: (a) Using the orbital angular momentum of photons[48]; (b) Using the multi-arm Mach–Zehnder-like interferometer[49].

    图 4  DPS-QSS协议的配置[57] (a)典型DPS-QSS的实验配置; (b)使用双场的DPS-QSS的实验配置

    Fig. 4.  Configuration of DPS-QSS protocol[57]: (a) Setup of typical DPS-QSS; (b) Setup of DPS-QSS using a twin field.

    图 5  MDI-QSS装置的示意图[104]

    Fig. 5.  Schematic of the MDI-QSS setup[104].

    图 6  图态类型 (a)线性簇态; (b)星形图态; (c)树形图态; (d)环形图态; (e)二维方格图态

    Fig. 6.  Types of Graph States (a) a linear cluster state; (b) a star-shaped graph state; (c) a tree-shaped graph state; (d) a ring-shaped graph state; (e) a 2D square graph state

    图 7  连续变量(2, 3)门限量子信息秘密共享方案示意图[66]

    Fig. 7.  Schematic of the (2, 3) threshold quantum information secret sharing scheme for continuous variable[66].

    图 8  共享纠缠态的量子信息秘密共享实验装置示意图[158]

    Fig. 8.  Schematic of the experimental setup for quantum information secret sharing of entangled states[158].

    表 1  三方测量结果的关联性

    Table 1.  Correlation of the measurement results from three parties.

    Alice
    $ |+x\rangle $ $ |-x\rangle $ $ |+y\rangle $ $ |-y\rangle $
    Bob $ |+x\rangle $ $ |+x\rangle $ $ |-x\rangle $ $ |-y\rangle $ $ |+y\rangle $
    $ |-x\rangle $ $ |-x\rangle $ $ |+x\rangle $ $ |+y\rangle $ $ |-y\rangle $
    $ |+y\rangle $ $ |-y\rangle $ $ |+y\rangle $ $ |-x\rangle $ $ |+x\rangle $
    $ |-y\rangle $ $ |+y\rangle $ $ |-y\rangle $ $ |+x\rangle $ $ |-x\rangle $
    下载: 导出CSV

    表 2  不同QSS方案的特点

    Table 2.  Characteristics of different QSS schemes.

    QSS方案特点
    使用纠缠态的QSS由于纠缠特性, 即使光源部分被攻击者控制, 只要测量端能够被完美表征并进行测量错误率即可获得安全的秘密共享. 但目前实验上高效制备纠缠态仍具有较大困难
    使用单光子的QSS相比于纠缠态, 单光子更容易制备和分发, 更具实验性和扩展性. 但仍与目前的通信光纤有适配性差异且容易受到特洛伊木马的攻击
    使用相干光的QSS实验实现简单, 与标准光纤适配更容易实现远距离传输, 具有高稳定性和易操作性. 但相干光存在多光子成分, 无法抵御光子数分裂攻击
    离散变量的QSS利用光子偏振态$ |H\rangle $和$ |V\rangle $或轨道角动量来编码密钥比特, 系统对损耗不敏感、测量和判别精度高. 但信道容量低、单光子制备困难
    连续变量的QSS利用光场的正交分量$ \hat{x} $和$ \hat{p} $来编码密钥比特, 相比于离散变量可以确定性实现. 但大多数方案要求独立激光源及激光源之间的信号同步, 并且易受到本振攻击
    环回QSS不用监测信号扰动, 密钥率能打破Pirandola-Laurenza-Ottaviani-Banchi界限. 但需要使用可变延迟马赫-曾德尔干涉仪限制了其实际应用
    测量设备无关的QSS能够消除测量端设备不完美带来的攻击风险, 有效增强系统的安全性. 但大多数协议传输效率仍然会随着用户数量的增加呈指数级下降
    设备无关的QSS能够消除所有实际不完美设备的安全漏洞. 但目前协议的性能仍然较低, 尚未有效实现
    下载: 导出CSV
    Baidu
  • [1]

    Shamir A 1979 Communications of the ACM 22 612Google Scholar

    [2]

    Blakley G R 1979 In Managing requirements knowledge, international workshop on (IEEE Computer Society), pp 313–313

    [3]

    Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, et al 2017 Nature 549 43Google Scholar

    [4]

    Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Y, Yin H L, Chen Z B 2022 PRX Quantum 3 020315Google Scholar

    [5]

    Gu J, Cao X Y, Fu Y, He Z W, Yin Z J, Yin H L, Chen Z B 2022 Sci. Bull. 67 2167Google Scholar

    [6]

    Yin H L, Fu Y, Li C L, Weng C X, Li B H, Gu J, Lu Y S, Huang S, Chen Z B 2023 Natl. Sci. Rev. 10 nwac228Google Scholar

    [7]

    Pan D, Long G L, Yin L, Sheng Y B, Ruan D, Ng S X, Lu J, Hanzo L 2024 IEEE Communications Surveys & Tutorials 26 1898

    [8]

    Cao X Y, Li B H, Wang Y, Fu Y, Yin H L, Chen Z B 2024 Sci. Adv. 10 eadk3258Google Scholar

    [9]

    Jing X, Qian C, Weng C X, Li B H, Chen Z, Wang C Q, Tang J, Gu X W, Kong Y C, Chen T S, et al 2024 Sci. Adv. 10 eadp2877Google Scholar

    [10]

    Du Y, Li B H, Hua X, Cao X Y, Zhao Z, Xie F, Zhang Z, Yin H L, Xiao X, Wei K 2025 Light: Sci. Appl. 14 108Google Scholar

    [11]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [12]

    Cleve R, Gottesman D, Lo H K 1999 Phys. Rev. Lett. 83 648Google Scholar

    [13]

    Markham D, Sanders B C 2008 Phys. Rev. A 78 042309Google Scholar

    [14]

    Qin S J, Gao F, Wen Q Y, Zhu F C 2007 Phys. Rev. A 76 062324Google Scholar

    [15]

    Chen Y A, Zhang A N, Zhao Z, Zhou X Q, Lu C Y, Peng C Z, Yang T, Pan J W 2005 Phys. Rev. Lett. 95 200502Google Scholar

    [16]

    Tittel W, Zbinden H, Gisin N 2001 Phys. Rev. A 63 042301Google Scholar

    [17]

    Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59 162Google Scholar

    [18]

    Zhang Z j, Gao G, Wang X, Han L f, Shi S h 2007 Opt. Commun. 269 418Google Scholar

    [19]

    Williams B P, Lukens J M, Peters N A, Qi B, Grice W P 2019 Phys. Rev. A 99 062311Google Scholar

    [20]

    Sen A, Sen U, Żukowski M, et al 2003 Phys. Rev. A 68 032309Google Scholar

    [21]

    Gaertner S, Bourennane M, Eibl M, Kurtsiefer C, Weinfurter H 2003 Appl. Phys. B 77 803Google Scholar

    [22]

    Gaertner S, Kurtsiefer C, Bourennane M, Weinfurter H 2007 Phys. Rev. Lett. 98 020503Google Scholar

    [23]

    Yu I C, Lin F L, Huang C Y 2008 Phys. Rev. A 78 012344Google Scholar

    [24]

    Xiao L, Lu Long G, Deng F G, Pan J W 2004 Phys. Rev. A 69 052307Google Scholar

    [25]

    Xiao Y R, Jia Z Y, Song Y C, Bao Y, Fu Y, Yin H L, Chen Z B 2024 Opt. Lett. 49 4210Google Scholar

    [26]

    Ishio H, Minowa J, Nosu K 1984 J. Lightwave Technol. 2 448Google Scholar

    [27]

    Wengerowsky S, Joshi S K, Steinlechner F, Hübel H, Ursin R 2018 Nature 564 225Google Scholar

    [28]

    Bouwmeester D, Pan J W, Daniell M, Weinfurter H, Zeilinger A 1999 Phys. Rev. Lett. 82 1345Google Scholar

    [29]

    Pan J W, Daniell M, Gasparoni S, Weihs G, Zeilinger A 2001 Phys. Rev. Lett. 86 4435Google Scholar

    [30]

    Zhao Z, Yang T, Chen Y A, Zhang A N, Żukowski M, Pan J W 2003 Phys. Rev. Lett. 91 180401Google Scholar

    [31]

    Huang Y F, Liu B H, Peng L, Li Y H, Li L, Li C F, Guo G C 2011 Nat. Commun. 2 546Google Scholar

    [32]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar

    [33]

    Gisin N 2015 Front. Phys. 10 1

    [34]

    Guo G P, Guo G C 2003 Phys. Lett. A 310 247Google Scholar

    [35]

    Deng F G, Zhou H Y, Long G L 2005 Phys. Lett. A 337 329Google Scholar

    [36]

    Han L F, Liu Y M, Liu J, Zhang Z J 2008 Opt. Commun. 281 2690Google Scholar

    [37]

    Wang T Y, Wen Q Y 2011 Quantum Inf. Comput. 11 434

    [38]

    Schmid C, Trojek P, Bourennane M, Kurtsiefer C, Żukowski M, Weinfurter H 2005 Phys. Rev. Lett. 95 230505Google Scholar

    [39]

    Bogdanski J, Ahrens J, Bourennane M 2009 Opt. Express 17 1055Google Scholar

    [40]

    Kuzin E, Nunez H C, Korneev N 1999 Opt. Commun. 160 37Google Scholar

    [41]

    Hai-Qiang M, Ke-Jin W, Jian-Hui Y 2013 Opt. Lett. 38 4494Google Scholar

    [42]

    Deng F G, Li X H, Zhou H Y, Zhang Z j 2005 Phys. Rev. A 72 044302Google Scholar

    [43]

    He G P 2007 Phys. Rev. Lett. 98 028901Google Scholar

    [44]

    Lucamarini M, Choi I, Ward M B, Dynes J F, Yuan Z, Shields A J 2015 Phys. Rev. X 5 031030

    [45]

    Tavakoli A, Herbauts I, Żukowski M, Bourennane M 2015 Phys. Rev. A 92 030302Google Scholar

    [46]

    Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X 2019 Light Sci. Appl. 8 90Google Scholar

    [47]

    Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nat. Photonics 9 796Google Scholar

    [48]

    Pinnell J, Nape I, de Oliveira M, TabeBordbar N, Forbes A 2020 Laser Photon. Rev. 14 2000012Google Scholar

    [49]

    Smania M, Elhassan A M, Tavakoli A, Bourennane M 2016 npj Quantum Inf. 2 1

    [50]

    Brassard G, Lütkenhaus N, Mor T, Sanders B C 2000 Phys. Rev. Lett. 85 1330Google Scholar

    [51]

    Lütkenhaus N, Jahma M 2002 New J. Phys. 4 44Google Scholar

    [52]

    Hwang W Y 2003 Phys. Rev. Lett. 91 057901Google Scholar

    [53]

    Wang X B 2005 Phys. Rev. Lett. 94 230503Google Scholar

    [54]

    Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [55]

    Inoue K, Waks E, Yamamoto Y 2003 Phys. Rev. A 68 022317Google Scholar

    [56]

    Inoue K, Ohashi T, Kukita T, Watanabe K, Hayashi S, Honjo T, Takesue H 2008 Opt. Express 16 15469Google Scholar

    [57]

    Gu J, Cao X Y, Yin H L, Chen Z B 2021 Opt. Express 29 9165Google Scholar

    [58]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400Google Scholar

    [59]

    Curty M, Azuma K, Lo H K 2019 npj Quantum Inf. 5 64Google Scholar

    [60]

    Yin H L, Chen Z B 2019 Sci. Rep. 9 17113Google Scholar

    [61]

    Fröhlich B, Lucamarini M, Dynes J F, Comandar L C, Tam W W S, Plews A, Sharpe A W, Yuan Z, Shields A J 2017 Optica 4 163Google Scholar

    [62]

    Shen A, Cao X Y, Wang Y, Fu Y, Gu J, Liu W B, Weng C X, Yin H L, Chen Z B 2023 Sci. China Phys. Mech. Astron. 66 260311Google Scholar

    [63]

    Wang Y Z, Sun X R, Cao X Y, Yin H L, Chen Z B 2024 Phys. Rev. Appl. 22 044018Google Scholar

    [64]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [65]

    Tyc T, Sanders B C 2002 Phys. Rev. A 65 042310Google Scholar

    [66]

    Lance A M, Symul T, Bowen W P, Sanders B C, Lam P K 2004 Phys. Rev. Lett. 92 177903Google Scholar

    [67]

    Kogias I, Xiang Y, He Q, Adesso G 2017 Phys. Rev. A 95 012315Google Scholar

    [68]

    Zhou Y, Yu J, Yan Z, Jia X, Zhang J, Xie C, Peng K 2018 Phys. Rev. Lett. 121 150502Google Scholar

    [69]

    Horodecki M, Horodecki P, Horodecki R 1998 Phys. Rev. Lett. 80 5239Google Scholar

    [70]

    Shor P W, Smolin J A, Thapliyal A V 2003 Phys. Rev. Lett. 90 107901Google Scholar

    [71]

    Jia X, Zhang J, Wang Y, Zhao Y, Xie C, Peng K 2012 Phys. Rev. Lett. 108 190501Google Scholar

    [72]

    Lau H K, Weedbrook C 2013 Phys. Rev. A 88 042313Google Scholar

    [73]

    Wu Y, Zhou J, Gong X, Guo Y, Zhang Z M, He G 2016 Phys. Rev. A 93 022325Google Scholar

    [74]

    Walk N, Eisert J 2021 PRX Quantum 2 040339Google Scholar

    [75]

    Grice W P, Qi B 2019 Phys. Rev. A 100 022339Google Scholar

    [76]

    Wu X, Wang Y, Huang D 2020 Phys. Rev. A 101 022301Google Scholar

    [77]

    Liao Q, Liu H, Zhu L, Guo Y 2021 Phys. Rev. A 103 032410Google Scholar

    [78]

    Liao Q, Liu X, Ou B, Fu X 2023 IEEE Trans. Commun. 71 6051Google Scholar

    [79]

    Liao Q, Liu H, Gong Y, Wang Z, Peng Q, Guo Y 2022 Opt. Express 30 3876Google Scholar

    [80]

    Huang D, Huang P, Wang T, Li H, Zhou Y, Zeng G 2016 Phys. Rev. A 94 032305Google Scholar

    [81]

    Liao Q, Fei Z, Huang L, Fu X 2025 Commun. Phys. 8 138Google Scholar

    [82]

    Shen Y, Zou H, Tian L, Chen P, Yuan J 2010 Phys. Rev. A 82 022317Google Scholar

    [83]

    Liu S, Lu Z, Wang P, Tian Y, Wang X, Li Y 2023 npj Quantum Inf. 9 92Google Scholar

    [84]

    Murta G, Grasselli F, Kampermann H, Bruß D 2020 Adv. Quantum Technol. 3 2000025Google Scholar

    [85]

    Cao X Y, Gu J, Lu Y S, Yin H L, Chen Z B 2021 New J. Phys. 23 043002Google Scholar

    [86]

    Proietti M, Ho J, Grasselli F, Barrow P, Malik M, Fedrizzi A 2021 Sci. Adv. 7 eabe0395Google Scholar

    [87]

    Richter S, Thornton M, Khan I, Scott H, Jaksch K, Vogl U, Stiller B, Leuchs G, Marquardt C, Korolkova N 2021 Phys. Rev. X 11 011038

    [88]

    Zhang Y F, Liu W B, Li B H, Yin H L, Chen Z B 2024 Phys. Rev. A 110 052613Google Scholar

    [89]

    Diamanti E, Leverrier A 2015 Entropy 17 6072Google Scholar

    [90]

    Liu W B, Li C L, Xie Y M, Weng C X, Gu J, Cao X Y, Lu Y S, Li B H, Yin H L, Chen Z B 2021 PRX Quantum 2 40334Google Scholar

    [91]

    Li S G, Li C L, Liu W B, Yin H L, Chen Z B 2024 Adv. Quantum Technol. 7 2400140Google Scholar

    [92]

    Gu J, Xie Y M, Liu W B, Fu Y, Yin H L, Chen Z B 2021 Opt. Express 29 32244Google Scholar

    [93]

    Sasaki T, Yamamoto Y, Koashi M 2014 Nature 509 475Google Scholar

    [94]

    Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar

    [95]

    Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V 2010 Nat. Photonics 4 686Google Scholar

    [96]

    Makarov V 2009 New J. Phys. 11 065003Google Scholar

    [97]

    Qin H, Kumar R, Makarov V, Alléaume R 2018 Phys. Rev. A 98 012312Google Scholar

    [98]

    Qi B, Fung C H F, Lo H K, Ma X 2007 Quantum Inf. Comput.

    [99]

    Huang J Z, Weedbrook C, Yin Z Q, Wang S, Li H W, Chen W, Guo G C, Han Z F 2013 Phys. Rev. A 87 062329Google Scholar

    [100]

    Wei K, Zhang W, Tang Y L, You L, Xu F 2019 Phys. Rev. A 100 022325Google Scholar

    [101]

    Qin H, Kumar R, Alléaume R 2016 Phys. Rev. A 94 012325Google Scholar

    [102]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [103]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [104]

    Fu Y, Yin H L, Chen T Y, Chen Z B 2015 Phys. Rev. Lett. 114 090501Google Scholar

    [105]

    Ma X, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326Google Scholar

    [106]

    Gao Z, Li T, Li Z 2020 Sci. China Phys. Mech. Astron. 63 120311Google Scholar

    [107]

    Yang Y G, Wang Y C, Yang Y L, Chen X B, Li D, Zhou Y H, Shi W M 2021 Sci. China Phys. Mech. Astron. 64 260321Google Scholar

    [108]

    Liu T, Lai J, Li Z, Li T 2025 Phys. Rev. Appl. 23 034057Google Scholar

    [109]

    Zhang C, Zhang Q, Zhong W, Du M M, Shen S T, Li X Y, Zhang A L, Zhou L, Sheng Y B 2025 Phys. Rev. A 111 012602Google Scholar

    [110]

    Liao Q, Huang L, Fei Z Y, Fu X Q Adv. Quantum Technol. 2400505

    [111]

    Wang Y, Tian C, Su Q, Wang M, Su X 2019 Science China Information Sciences 62 1

    [112]

    Li C L, Fu Y, Liu W B, Xie Y M, Li B H, Zhou M G, Yin H L, Chen Z B 2023 Phys. Rev. Res. 5 033077Google Scholar

    [113]

    Azuma K, Tamaki K, Lo H K 2015 Nat. Commun. 6 1

    [114]

    Roy S, Mukhopadhyay S 2019 Phys. Rev. A 100 012319Google Scholar

    [115]

    Zhang Q, Zhong W, Du M M, Shen S T, Li X Y, Zhang A L, Zhou L, Sheng Y B 2024 Phys. Rev. A 110 042403Google Scholar

    [116]

    Zhang Q, Ying J W, Wang Z J, Zhong W, Du M M, Shen S T, Li X Y, Zhang A L, Gu S P, Wang X F, et al 2025 Phys. Rev. A 111 012603Google Scholar

    [117]

    Zhang Z, Yuan C, Shen S, Yu H, Zhang R, Wang H, Li H, Wang Y, Deng G, Wang Z, et al 2021 npj Quantum Inf. 7 123Google Scholar

    [118]

    Chen X, Fu Z, Gong Q, Wang J 2021 Adv. Photon. 3 064002

    [119]

    Chopin A, Barone A, Ghorbel I, Combrié S, Bajoni D, Raineri F, Galli M, De Rossi A 2023 Commun. Phys. 6 77Google Scholar

    [120]

    Chen S, Peng L C, Guo Y P, Gu X M, Ding X, Liu R Z, Zhao J Y, You X, Qin J, Wang Y F, et al 2024 Phys. Rev. Lett. 132 130603Google Scholar

    [121]

    Huang J, Mao J, Li X, Yuan J, Zheng Y, Zhai C, Dai T, Fu Z, Bao J, Yang Y, et al 2025 Nat. Photonics 1

    [122]

    Nemirovsky-Levy L, Pereg U, Segev M 2024 Optica Quantum 2 165Google Scholar

    [123]

    Yan P S, Zhou L, Zhong W, Sheng Y B 2023 Sci. China Phys. Mech. Astron. 66 250301Google Scholar

    [124]

    Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Zhang C, Xing W B, Huang Y F, Li C F, et al 2021 Phys. Rev. Lett. 126 010503Google Scholar

    [125]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [126]

    Senthoor K, Sarvepalli P K 2022 IEEE Transactions on Information Theory 68 3164Google Scholar

    [127]

    Yang Y G, Wang Y, Chai H P, Teng Y W, Zhang H 2011 Opt. Commun. 284 3479Google Scholar

    [128]

    Jia H Y, Wen Q Y, Gao F, Qin S J, Guo F Z 2012 Phys. Lett. A 376 1035Google Scholar

    [129]

    Sun Y, Xu S W, Chen X B, Niu X X, Yang Y X 2013 Quantum Inf. Process. 12 2877Google Scholar

    [130]

    Li Y, Zhang K, Peng K 2004 Phys. Lett. A 324 420Google Scholar

    [131]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2005 Phys. Rev. A 72 044301Google Scholar

    [132]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2006 Eur. Phys. J. D 39 459Google Scholar

    [133]

    Yuan H, Liu Y M, Zhang W, Zhang Z J 2008 J. Phys. B 41 145506Google Scholar

    [134]

    Shi R h, Huang L s, Yang W, Zhong H 2011 Quantum Inf. Process. 10 231Google Scholar

    [135]

    Pathak A, Banerjee A 2011 Int. J. Quantum Inf. 09 389Google Scholar

    [136]

    Muralidharan S, Panigrahi P K 2008 Phys. Rev. A 78 062333Google Scholar

    [137]

    Nie Y y, Li Y h, Liu J c, Sang M h 2011 Opt. Commun. 284 1457Google Scholar

    [138]

    Roos C F, Riebe M, Häffner H, Hänsel W, Benhelm J, Lancaster G P T, Becher C, Schmidt-Kaler F, Blatt R 2004 Science 304 1478Google Scholar

    [139]

    Agrawal P, Pati A 2006 Phys. Rev. A 74 062320Google Scholar

    [140]

    Gottesman D 2000 Phys. Rev. A 61 42311Google Scholar

    [141]

    Wang X W, Xia L X, Wang Z Y, Zhang D Y 2010 Opt. Commun. 283 1196Google Scholar

    [142]

    Wang X W, Zhang D Y, Tang S Q, Zhan X G, You K M 2010 Int. J. Theor. Phys. 49 2691Google Scholar

    [143]

    Wang X W, Zhang D Y, Tang S Q, Xie L J 2011 J. Phys. B 44 35505Google Scholar

    [144]

    Shukla C, Pathak A 2013 Phys. Lett. A 377 1337Google Scholar

    [145]

    Chandran L S, Gajjala R 2024 Quantum 8 1396Google Scholar

    [146]

    Kashefi E, Markham D, Mhalla M, Perdrix S 2009 Electronic Proceedings in Theoretical Computer Science 9 87Google Scholar

    [147]

    Javelle J, Mhalla M, Perdrix S 2013 New Protocols and Lower Bounds for Quantum Secret Sharing with Graph States (Springer Berlin Heidelberg), p 1–12

    [148]

    Gravier S, Javelle J, Mhalla M, Perdrix S 2013 In Hutchison D, Kanade T, Kittler J, Kleinberg J M, Mattern F, Mitchell J C, Naor M, Nierstrasz O, Pandu Rangan C, Steffen B, Sudan M, Terzopoulos D, Tygar D, Vardi M Y, Weikum G, Kučera A, Henzinger T A, Nešetřil J, Vojnar T, Antoš D, editors, Mathematical and Engineering Methods in Computer Science, vol. 7721 (Berlin, Heidelberg: Springer Berlin Heidelberg), pp 15–31

    [149]

    Keet A, Fortescue B, Markham D, Sanders B C 2010 Phys. Rev. A 82 62315Google Scholar

    [150]

    Bell B, Markham D, Herrera-Martí D, Marin A, Wadsworth W, Rarity J, Tame M 2014 Nat. Commun. 5 1

    [151]

    Bell B A, Herrera-Martí D A, Tame M S, Markham D, Wadsworth W J, Rarity J G 2014 Nat. Commun. 5 3658Google Scholar

    [152]

    Cooper E S, Kunkel P, Periwal A, Schleier-Smith M 2024 Nat. Phys. 20 770Google Scholar

    [153]

    Thomas P, Ruscio L, Morin O, Rempe G 2024 Nature 629 567Google Scholar

    [154]

    Huang J, Chen X, Li X, Wang J 2023 AAPPS Bulletin 33 14Google Scholar

    [155]

    Lance A M, Symul T, Bowen W P, Tyc T, Sanders B C, Lam P K 2003 New J. Phys. 5 4Google Scholar

    [156]

    Lance A M, Symul T, Bowen W P, Sanders B C, Tyc T, Ralph T C, Lam P K 2005 Phys. Rev. A 71 033814Google Scholar

    [157]

    Chen Y, Zhu Q, Wang X, Lou Y, Liu S, Jing J 2023 Adv. Photon. 5 026006

    [158]

    Lu H, Zhang Z, Chen L K, Li Z D, Liu C, Li L, Liu N L, Ma X, Chen Y A, Pan J W 2016 Phys. Rev. Lett. 117 030501Google Scholar

    [159]

    Lee S M, Lee S W, Jeong H, Park H S 2020 Phys. Rev. Lett. 124 060501Google Scholar

    [160]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [161]

    Azuma K, Economou S E, Elkouss D, Hilaire P, Jiang L, Lo H K, Tzitrin I 2023 Rev. Mod. Phys. 95 045006Google Scholar

    [162]

    Li C L, Yin H L, Chen Z B 2024 Rep. Prog. Phys. 87 127901Google Scholar

    [163]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 42317Google Scholar

    [164]

    Tian Y, Wang J, Bian G, Chang J, Li J 2024 Adv Quantum Tech 7 2400116Google Scholar

    [165]

    Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S, Sanpera A 1996 Phys. Rev. Lett. 77 2818Google Scholar

    [166]

    And A 2012 Commun. Theor. Phys. 58 661Google Scholar

    [167]

    Gupta S, Sinha A, Pandey S K 2024 Quantum Inf. Process. 23 58Google Scholar

  • [1] 徐佳歆, 徐乐辰, 刘靖阳, 丁华建, 王琴. 人工智能赋能量子通信与量子传感系统.  , doi: 10.7498/aps.74.20250322
    [2] 廖骎, 费焯迎, 王一军. 基于卡尔曼滤波的本地本振连续变量量子秘密共享.  , doi: 10.7498/aps.74.20250227
    [3] 陈云, 李璇冰, 李帅. 基于正交乘积态的多方量子秘密共享协议.  , doi: 10.7498/aps.74.20250394
    [4] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案.  , doi: 10.7498/aps.73.20230138
    [5] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响.  , doi: 10.7498/aps.71.20211146
    [6] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信.  , doi: 10.7498/aps.71.20210907
    [7] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用.  , doi: 10.7498/aps.71.20220871
    [8] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引.  , doi: 10.7498/aps.70.20201981
    [9] 梁建武, 程资, 石金晶, 郭迎. 基于量子图态的量子秘密共享.  , doi: 10.7498/aps.65.160301
    [10] 李熙涵. 量子直接通信.  , doi: 10.7498/aps.64.160307
    [11] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案.  , doi: 10.7498/aps.63.130301
    [12] 聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸. 中尺度沙尘暴对量子卫星通信信道的影响及性能仿真.  , doi: 10.7498/aps.63.240303
    [13] 韦克金, 马海强, 汪龙. 一种基于双偏振分束器的量子秘密共享方案.  , doi: 10.7498/aps.62.104205
    [14] 何锐. 基于超导量子干涉仪与介观LC共振器耦合电路的量子通信.  , doi: 10.7498/aps.61.030303
    [15] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议.  , doi: 10.7498/aps.61.154206
    [16] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源.  , doi: 10.7498/aps.60.060308
    [17] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议.  , doi: 10.7498/aps.59.2193
    [18] 孙 莹, 杜建忠, 秦素娟, 温巧燕, 朱甫臣. 具有双向认证功能的量子秘密共享方案.  , doi: 10.7498/aps.57.4689
    [19] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议.  , doi: 10.7498/aps.56.5066
    [20] 杨宇光, 温巧燕, 朱甫臣. 单个N维量子系统的量子秘密共享.  , doi: 10.7498/aps.55.3255
计量
  • 文章访问数:  77
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-30
  • 修回日期:  2025-06-24
  • 上网日期:  2025-08-06

/

返回文章
返回
Baidu
map