搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多模态谐振的宽频雨水压电俘能器设计

李昊 周晶晶 孙琪 陈文 周静

引用本文:
Citation:

基于多模态谐振的宽频雨水压电俘能器设计

李昊, 周晶晶, 孙琪, 陈文, 周静

Design of broadband rainwater piezoelectric energy harvester based on multimodal resonance

LI Hao, ZHOU Jingjing, SUN Qi, CHEN Wen, ZHOU Jing
cstr: 32037.14.aps.74.20250213
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 随着全球对可再生能源需求的持续增长, 雨水资源的开发利用逐渐成为研究热点. 压电俘能技术因其结构简单、能量转换效率高且无需外部电源等优势而备受关注. 然而传统压电俘能器受限于单一谐振频率, 难以适应复杂多变的环境激励. 本研究设计了多种用于雨水能量收集的宽频压电悬臂梁俘能器, 通过理论分析和数值模拟, 对压电悬臂梁的结构参数进行优化. COMSOL仿真和实验结果表明, U形压电俘能器在拓宽谐振频率范围和延长振荡时间方面显著优于其余俘能器结构设计, 可以实现单次冲击下23.7 s的振荡时间、2.82 μC的电荷俘获及37.76 W/m2的输出功率密度, 展现了其在宽谐振范围下的高效能量俘获能力. 此外, U形设计还可以实现结构防水, 增强了其在雨水环境中的适用性. 本研究为雨水能量收集提供了具有普适性的新方法, 拓展了压电能量俘获技术的应用场景, 为宽频能量收集器的设计及应用提供了理论参考和实践指导.
    With the continuous growth of global demand for renewable energy, the utilization of rainwater resources has gradually become a focal point of research. Piezoelectric energy harvesting has received significant attention because the harvester has simple structure, high energy conversion efficiency, and self-powering capability. However, traditional piezoelectric energy harvesters are limited by the narrow resonance frequency bandwidth and the insufficient waterproofing ability, which restricts the adaptability of energy conversion to variable environmental excitations. To solve this problem, a broadband piezoelectric cantilever energy harvester for rainwater energy harvesting is designed in this work. The influence mechanisms of droplet impact parameters, waterproof encapsulation technology, and MFC cantilever structure on the electrical output performance are studied through theoretical analysis, numerical simulation, and experimental validation. It reveals that the droplet’s Weber number exhibits a direct proportionality with the impact force, which is distributed within the 0–80 Hz frequency range. Simulations and experimental results demonstrate that the U-shaped piezoelectric energy harvester significantly outperforms other designs in terms of broadening the resonant frequency range and extending oscillation duration, achieving an oscillation time of 23.7 s, a charge transfer of 2.82 μC, and an output power density of 37.76 W/m2 under a single impact. It demonstrates its efficient energy harvesting capability in a wide resonance frequency range. Additionally, the U-shaped design also improves its waterproof performance, thus further enhancing its applicability in rainwater environments. This study provides a novel, universally applicable approach for collecting rainwater energy, expands the application scenarios of piezoelectric energy harvesting technology, and provides theoretical references and practical guidance for designing and applying broadband energy harvesters.
      通信作者: 周静, zhoujing@whut.edu.cn
    • 基金项目: 海南省自然科学基金创新研究团队项目(批准号: 524CXTD431)、信息功能材料结构与器件安徽普通高校重点实验室开放课题(批准号: FMDI202407)和阜阳师范大学青年人才基金重点项目(批准号: rcxm202402)资助的课题.
      Corresponding author: ZHOU Jing, zhoujing@whut.edu.cn
    • Funds: Project supported by the Natural Science Foundation Innovation Research Team of Hainan Province, China (Grant No. 524CXTD431), the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Education Institutes Open Project, China (Grant No. FMDI202407), and the Key Project of Fuyang Normal University Youth Talent Fund, China (Grant No. rcxm202402).
    [1]

    Zheng Y, Liu T, Wu J P, Xu T T, Wang X D, Han X, Cui H Z, Xu X F, Pan C F, Li X Y 2022 Adv. Mater. 34 2202238Google Scholar

    [2]

    Sezer N, Koç M 2021 Nano Energy 80 105567Google Scholar

    [3]

    Ilyas M A, Swingler J 2015 Energy 90 796Google Scholar

    [4]

    Wong V K, Ho J H, Chai A B 2017 Energy 124 364Google Scholar

    [5]

    Kumar B, Upadhyay G, Bhardwaj R 2023 Langmuir 39 18768Google Scholar

    [6]

    Guigon R, Chaillout J J, Jager T, Despesse G 2008 Smart Mater. Struct. 17 015038Google Scholar

    [7]

    Kim J H, Rothstein J P, Shang J K 2018 Phys. Fluids 30 072102Google Scholar

    [8]

    Yao M H, Liu P F, Ma L, Wang H B, Zhang W 2020 Acta Mech. Sin. 36 557Google Scholar

    [9]

    陈南南 2020 硕士学位论文 (淮南: 安徽理工大学)

    Chen N N 2020 M. S. Thesis (Huainan: Anhui University of Technology

    [10]

    Huang X H, Zhang C, Dai K R 2021 Micromachines 12 203Google Scholar

    [11]

    Wang J, Fan B, Fang J W, Zhao J C, Li C 2022 Energy Rep. 8 11638Google Scholar

    [12]

    Wang L, Lu D J, Jiang Z D, Jia C, Wu Y M, Zhou X Y, Zhao L B, Zhao Y L 2018 AIP Adv. 8 115205Google Scholar

    [13]

    Upadrashta D, Yang Y 2015 Smart Mater. Struct. 24 045042Google Scholar

    [14]

    Cao D X, Zhan C H, Guo X Y, Yao M H 2024 J. Vib. Eng. Technol. 12 5073Google Scholar

    [15]

    孙帅令, 冷永刚, 张雨阳, 苏徐昆, 范胜波 2020 69 140502Google Scholar

    Sun S L, Leng Y G, Zhang Y Y, Su X K, Fan S B 2020 Acta Phys. Sin. 69 140502Google Scholar

    [16]

    高裕昆, 赵洁, 周晶晶, 周静 2025 74 057701Google Scholar

    Gao Y K, Zhao J, Zhou J J, Zhou J 2025 Acta Phys. Sin. 74 057701Google Scholar

    [17]

    Zhou J J, Zhou J, Yu Y, Shen J, Zhang P C, Chen W 2023 Ceram. Int. 49 32528Google Scholar

    [18]

    Zhou J J, Zhou J, Chen W, Tian J, Shen J, Zhang P C 2022 Compos. Struct. 299 116019Google Scholar

    [19]

    Zhang B, Sanjay V, Shi S L, Zhao Y G, Lv C J, Feng X Q, Lohse D 2022 Phys. Rev. Lett. 129 104501Google Scholar

    [20]

    Li X J, Zhang L Q, Feng Y G, Zhang Y L, Xu H Z, Zhou F, Wang D A 2023 ACS Nano 17 23977Google Scholar

    [21]

    Doria A, Fanti G, Filipi G, Moro F 2019 Sensors 19 3653Google Scholar

    [22]

    Hao G N, Dong X W, Li Z L 2021 Energy 232 121071Google Scholar

    [23]

    Xu W H, Zheng H X, Liu Y, Zhou X F, Zhang C, Song Y X, Deng X, Leung M, Yang Z B, Xu R X, Wang Z L, Zeng X C, Wang Z K 2020 Nature 578 392Google Scholar

    [24]

    Xu X T, Wang Y L, Li P Y, Xu W H, Wei L, Wang Z K, Yang Z B 2021 Nano Energy 90 106573Google Scholar

    [25]

    Wang H C, Feng M, Wang W P, Wang W Q, Meng J, Liu Y P, Wang Q, Wang D A 2024 J. Mater. Chem. A 12 4727Google Scholar

  • 图 1  悬臂梁结构模型 (a) 压电悬臂梁; (b) 封装压电悬臂梁; (c) U形压电悬臂梁

    Fig. 1.  Cantilever beam structure models: (a) Piezoelectric cantilever beam; (b) piezoelectric cantilever beam with a waterproof layer; (c) U-shaped piezoelectric cantilever beam.

    图 2  (a) 压电俘能器模型示意图及实物图; (b) MFC结构示意图

    Fig. 2.  (a) Schematic and photo of the energy harvester; (b) schematic of MFC.

    图 3  (a) 不同水滴直径和(b) 不同冲击速度的冲击力曲线

    Fig. 3.  Impact force curves under different (a) droplet diameters and (b) impact velocities.

    图 4  水滴冲击力频域分布图

    Fig. 4.  Frequency domain of water droplet impact force.

    图 5  悬臂梁结构扫频 (a) 悬臂梁基板材料; (b)悬臂梁长度

    Fig. 5.  Frequency sweep of cantilever beam structure: (a) Substrate materials; (b) cantilever lengths.

    图 6  不同封装层厚度电压输出 (a)频域结果; (b)时域结果

    Fig. 6.  Encapsulation layer thickness: (a) Frequency-domain; (b) time-domain.

    图 7  S3结构不同附加悬臂梁长度频域分布图

    Fig. 7.  Frequency-domain of U-shaped cantilever beam with additional beams.

    图 8  S3结构不同上梁长度开路电压仿真结果

    Fig. 8.  Simulation results of open-circuit voltage of S3.

    图 9  不同水滴冲击速度下压电悬臂梁开路电压

    Fig. 9.  Voltage of piezoelectric cantilever beams under different impact velocities.

    图 10  不同封装厚度 (a)负载电压; (b) 负载功率

    Fig. 10.  Under encapsulation thicknesses: (a) Load voltage; (b) load power.

    图 11  不同上梁长度比较 (a)开路电压; (b)短路电流; (c)转移电荷量; (d)负载电压和功率

    Fig. 11.  Comparisons of upper beam lengths: (a) Open-circuit voltage; (b) short-circuit current; (c) transferred charge; (d) load voltage and power.

    图 12  真实雨水环境测试图

    Fig. 12.  Rainwater environmental test.

    表 1  水滴能量收集装置性能数据

    Table 1.  Performance of the droplet energy harvesting devices from studies.

    年份 材料体系 Umax/V Pmax/(W·m–2) Q/nC
    2015[3] PZT-悬臂梁 1.61 0.23
    2019[21] PVDF-悬臂梁 3.5 6.92
    2021[22] PVDF-两端固定梁 14.3 30.2
    2020[23] PTFE-摩擦纳米发电机 143.5 49.8
    2021[24] FEP-摩擦纳米发电机 261.2 82.66 101
    2024[25] PP-摩擦纳米发电机 200 26.7
    本工作 MFC-U形悬臂梁 12.7 37.76 2820
    下载: 导出CSV
    Baidu
  • [1]

    Zheng Y, Liu T, Wu J P, Xu T T, Wang X D, Han X, Cui H Z, Xu X F, Pan C F, Li X Y 2022 Adv. Mater. 34 2202238Google Scholar

    [2]

    Sezer N, Koç M 2021 Nano Energy 80 105567Google Scholar

    [3]

    Ilyas M A, Swingler J 2015 Energy 90 796Google Scholar

    [4]

    Wong V K, Ho J H, Chai A B 2017 Energy 124 364Google Scholar

    [5]

    Kumar B, Upadhyay G, Bhardwaj R 2023 Langmuir 39 18768Google Scholar

    [6]

    Guigon R, Chaillout J J, Jager T, Despesse G 2008 Smart Mater. Struct. 17 015038Google Scholar

    [7]

    Kim J H, Rothstein J P, Shang J K 2018 Phys. Fluids 30 072102Google Scholar

    [8]

    Yao M H, Liu P F, Ma L, Wang H B, Zhang W 2020 Acta Mech. Sin. 36 557Google Scholar

    [9]

    陈南南 2020 硕士学位论文 (淮南: 安徽理工大学)

    Chen N N 2020 M. S. Thesis (Huainan: Anhui University of Technology

    [10]

    Huang X H, Zhang C, Dai K R 2021 Micromachines 12 203Google Scholar

    [11]

    Wang J, Fan B, Fang J W, Zhao J C, Li C 2022 Energy Rep. 8 11638Google Scholar

    [12]

    Wang L, Lu D J, Jiang Z D, Jia C, Wu Y M, Zhou X Y, Zhao L B, Zhao Y L 2018 AIP Adv. 8 115205Google Scholar

    [13]

    Upadrashta D, Yang Y 2015 Smart Mater. Struct. 24 045042Google Scholar

    [14]

    Cao D X, Zhan C H, Guo X Y, Yao M H 2024 J. Vib. Eng. Technol. 12 5073Google Scholar

    [15]

    孙帅令, 冷永刚, 张雨阳, 苏徐昆, 范胜波 2020 69 140502Google Scholar

    Sun S L, Leng Y G, Zhang Y Y, Su X K, Fan S B 2020 Acta Phys. Sin. 69 140502Google Scholar

    [16]

    高裕昆, 赵洁, 周晶晶, 周静 2025 74 057701Google Scholar

    Gao Y K, Zhao J, Zhou J J, Zhou J 2025 Acta Phys. Sin. 74 057701Google Scholar

    [17]

    Zhou J J, Zhou J, Yu Y, Shen J, Zhang P C, Chen W 2023 Ceram. Int. 49 32528Google Scholar

    [18]

    Zhou J J, Zhou J, Chen W, Tian J, Shen J, Zhang P C 2022 Compos. Struct. 299 116019Google Scholar

    [19]

    Zhang B, Sanjay V, Shi S L, Zhao Y G, Lv C J, Feng X Q, Lohse D 2022 Phys. Rev. Lett. 129 104501Google Scholar

    [20]

    Li X J, Zhang L Q, Feng Y G, Zhang Y L, Xu H Z, Zhou F, Wang D A 2023 ACS Nano 17 23977Google Scholar

    [21]

    Doria A, Fanti G, Filipi G, Moro F 2019 Sensors 19 3653Google Scholar

    [22]

    Hao G N, Dong X W, Li Z L 2021 Energy 232 121071Google Scholar

    [23]

    Xu W H, Zheng H X, Liu Y, Zhou X F, Zhang C, Song Y X, Deng X, Leung M, Yang Z B, Xu R X, Wang Z L, Zeng X C, Wang Z K 2020 Nature 578 392Google Scholar

    [24]

    Xu X T, Wang Y L, Li P Y, Xu W H, Wei L, Wang Z K, Yang Z B 2021 Nano Energy 90 106573Google Scholar

    [25]

    Wang H C, Feng M, Wang W P, Wang W Q, Meng J, Liu Y P, Wang Q, Wang D A 2024 J. Mater. Chem. A 12 4727Google Scholar

  • [1] 陈鹏博, 王少义, 张文博, 温家星, 吴玉迟, 赵宗清, 王度. 基于深度学习的长波红外介电光栅加速器结构设计.  , 2025, 74(14): 144101. doi: 10.7498/aps.74.20250130
    [2] 刘利利, 张鼎, 马儒军. 离子热电池中热导调控的研究进展与展望.  , 2025, 74(17): . doi: 10.7498/aps.74.20250503
    [3] 高裕昆, 赵洁, 周晶晶, 周静. 压电纤维复合材料智能传感器的有限元预测与器件性能.  , 2025, 74(5): 057701. doi: 10.7498/aps.74.20241379
    [4] 杜安天, 刘若涛, 曹春芳, 韩实现, 王海龙, 龚谦. 利用InAs/GaAs数字合金超晶格改进InAs量子点有源区的结构设计.  , 2023, 72(12): 128101. doi: 10.7498/aps.72.20230270
    [5] 吴飞, 黄威, 陈文渊, 肖勇, 郁殿龙, 温激鸿. 基于微孔板与折曲通道的亚波长宽带吸声结构设计.  , 2020, 69(13): 134303. doi: 10.7498/aps.69.20200368
    [6] 钱治文, 商德江, 孙启航, 何元安, 翟京生. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法.  , 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [7] 王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波. 基于人工表面等离激元的双通带频率选择结构设计.  , 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [8] 王志成, 曹光旱. 新型交生结构自掺杂铁基超导体.  , 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [9] 姜珊珊, 刘艳, 邢尔军. 低差分模式时延少模光纤的有限元分析及设计.  , 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [10] 范敏敏, 徐静平, 刘璐, 白玉蓉, 黄勇. 高k栅介质GeOI金属氧化物半导体场效应管阈值电压和亚阈斜率模型及其器件结构设计.  , 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [11] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真.  , 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [12] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究.  , 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [13] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析.  , 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [14] 郭云胜, 张雪峰. 一种结构简单的二维左手材料设计及仿真研究.  , 2010, 59(12): 8584-8590. doi: 10.7498/aps.59.8584
    [15] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟.  , 2009, 58(6): 4041-4052. doi: 10.7498/aps.58.4041
    [16] 张松, 屈绍波, 马华, 谢峰, 徐卓. 基于平行金属条的左手结构设计与仿真研究.  , 2009, 58(6): 3961-3965. doi: 10.7498/aps.58.3961
    [17] 陈云, 康秀红, 李殿中. 自由枝晶生长相场模型的自适应有限元法模拟.  , 2009, 58(1): 390-398. doi: 10.7498/aps.58.390
    [18] 王 源, 贾 嵩, 孙 磊, 张钢刚, 张 兴, 吉利久. 栅耦合型静电泄放保护结构设计.  , 2007, 56(12): 7242-7247. doi: 10.7498/aps.56.7242
    [19] 梁 双, 吕燕伍. 有限元法计算GaN/AlN量子点结构中的电子结构.  , 2007, 56(3): 1617-1620. doi: 10.7498/aps.56.1617
    [20] 佟存柱, 牛智川, 韩 勤, 吴荣汉. 1.3μm GaAs基量子点垂直腔面发射激光器结构设计与分析.  , 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
计量
  • 文章访问数:  709
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-21
  • 修回日期:  2025-05-06
  • 上网日期:  2025-05-10
  • 刊出日期:  2025-07-20

/

返回文章
返回
Baidu
map