搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用InAs/GaAs数字合金超晶格改进InAs量子点有源区的结构设计

杜安天 刘若涛 曹春芳 韩实现 王海龙 龚谦

引用本文:
Citation:

利用InAs/GaAs数字合金超晶格改进InAs量子点有源区的结构设计

杜安天, 刘若涛, 曹春芳, 韩实现, 王海龙, 龚谦

Improving structure design of active region of InAs quantum dots by using InAs/GaAs digital alloy superlattice

Du An-Tian, Liu Ruo-Tao, Cao Chun-Fang, Han Shi-Xian, Wang Hai-Long, Gong Qian
PDF
HTML
导出引用
  • 利用分子束外延技术, 通过InAs/GaAs数字合金超晶格代替传统的直接生长InGaAs层的方式, 在GaAs(100)衬底上生长了InAs量子点结构并成功制备了1.3 μm InAs量子点激光器. 通过原子力显微镜和光致荧光谱测试手段, 对传统生长模式和数字合金超晶格生长模式的两种样品进行了表征, 研究发现采用32周期InAs/GaAs数字合金超晶格样品的量子点密度非常高, 发光性能良好. 通过与常规生长方式所制备激光器的性能对比, 发现采用InAs/GaAs数字合金超晶格生长InAs量子点的有源区也可以得到高质量的激光器. 利用该方式生长的InAs量子点激光器的阈值电流为24 mA, 相应的阈值电流密度仅为75 A/cm2, 最高工作温度达到120 ℃. InAs/GaAs数字合金超晶格既可以保证生长过程中源炉的温度保持不变, 还可以对InGaAs层的组分实现灵活调控. 不需要改变生长速度, 通过改变InAs/GaAs数字合金超晶格的周期数以及InAs层和GaAs层的厚度, 便可以获得任意组分的InGaAs, 从而得到不同发光波长的激光器. 这种生长方式对量子点有源区的结构设计和外延生长提供了新思路.
    A 1.3-μm InAs quantum dot laser has been successfully fabricated on a GaAs(100) substrate by molecular beam epitaxy (MBE) technique through using InAs/GaAs digital alloy superlattices instead of the conventional InGaAs layer. The samples grown by conventional growth method and the digital alloy superlattice growth method are characterized by atomic force microscope (AFM) and photoluminescence (PL) spectroscopy. It is found that 8-period sample possesses a low quantum dot density and poor luminescence performance. With the increase of the number of growth periods, the quantum dot density of the sample increases and the luminous performance improves. This indicates that the quality of the grown sample improves with the increase of InAs/GaAs period of the InGaAs layer. When the total InAs/GaAs period is 32, the quantum dot density of the sample is high and the luminescence performance is good. After the experimental measurement, the sample DAL-0 fabricated by conventional growth method and the sample DAL-32 (32-periods InAs/GaAs digital alloy superlattices) are utilized to fabricate quantum dot laser by standard process. The performances of two types of quantum dot lasers obtained with different growth methods are characterized. It is found that the InAs quantum dot lasers fabricated by the sample grown by digital alloy superlattice method have good performances. Under continuous wave operation mode, the threshold current is 24 mA corresponding to a threshold current density of 75 A/cm2. The highest operation-temperature reaches 120 ℃. In addition, InAs quantum dot laser using digital alloy superlattice has good temperature stability. Its characteristic temperature is 55.4 K. Compared with the traditional laser, the InAs quantum dot laser grown by InAs/GaAs digital alloy superlattice has good performance in terms of threshold current density, output power and temperature stability, which indicates that high-quality laser can be obtained by this growth method. Using the InAs/GaAs digital alloy superlattice growth method, the InGaAs composition can be changed without changing the temperature of the source oven. Thus InAs quantum dot lasers with different luminescence wavelengths can be obtained through this growth method. The InAs/GaAs digital alloy superlattice structure can be used to realize different averaging of In content in the growth structure. The method provides a new idea for designing and growing the active region of quantum dot laser.
      通信作者: 王海龙, hlwang@qfnu.edu.cn ; 龚谦, qgong@mail.sim.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61674096)资助的课题.
      Corresponding author: Wang Hai-Long, hlwang@qfnu.edu.cn ; Gong Qian, qgong@mail.sim.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61674096).
    [1]

    王海玲, 王霆, 张建军 2019 68 117301Google Scholar

    Wang H L, Wang T, Zhang J J 2019 Acta Phys. Sin. 68 117301Google Scholar

    [2]

    OzakiN, Ikuno D 2022 J. Cryst. Growth 588 126657Google Scholar

    [3]

    Yang J, Liu Z, Jurczak P, Tang M, Li K, Pan S, Sanchez A, Beanland R, Zhang Z C, Wang H 2021 J. Phys. D Appl. Phys. 54 035103Google Scholar

    [4]

    王霆, 张建军, 刘会赟 2015 64 204209Google Scholar

    Wang T, Zhang J J, Liu H Y 2015 Acta Phys. Sin. 64 204209Google Scholar

    [5]

    Wang Z, Qi W, Feng Q, Wang T, Zhang J 2021 Opt. Express 29 674

    [6]

    Bimberg D, Pohl U W 2011 Mater. Today 14 388Google Scholar

    [7]

    Ruiz-Marín N, Reyes D F, Stanojević L, BenT, Braza V, Gallego-Carro A, Bárcena-González G, Ulloa J M, González D 2022 Appl. Surf. Sci. 573 151572Google Scholar

    [8]

    田芃, 黄黎蓉, 费淑萍, 余奕, 潘彬, 徐巍, 黄德修 2010 59 5738Google Scholar

    Tian P, Huang L R, Fei S P, Yu Y, Pan B, Xu W, Huang D X 2010 Acta Phys. Sin. 59 5738Google Scholar

    [9]

    Norman J C, Jung D, Zhang Z, Wan Y, Liu S, Shang C, Herrick R W, Chow W W, Gossard A C, Bowers J E 2019 IEEE J. Quantum Elect. 55 1Google Scholar

    [10]

    Arsenijević D, Bimberg D 2017 Green Photonics and Electronics (Cham, Switzerland: Springer International Publishing) pp75–106

    [11]

    Alexander R R, Childs D T D, Agarwal H, Groom K M, Liu H Y, Hopkinson M, Hogg R A, Ishida M, Yamamoto T, Sugawara M, Arakawa Y, Badcock T J, Royce R J, Mowbray D J 2007 IEEE J. Quantum Elect. 43 1129Google Scholar

    [12]

    Coleman J J, Young J D, Garg A 2011 J. Lightwave Technol. 29 499Google Scholar

    [13]

    Sugawara M, Usami M 2009 Nat. Photonics 3 30Google Scholar

    [14]

    Yamaguchi K, Yujobo K, Kaizu T 2000 Jpn. J. Appl. Phys. 39 L1245Google Scholar

    [15]

    Leonard D, Krishnamurthy M, Reaves C M, Denbaars S P, Petroff P M 1993 Appl. Phys. Lett. 63 3203Google Scholar

    [16]

    Yang J, Tang M, Chen S, Liu H Y 2023 Light. Sci. Appl. 12 16Google Scholar

    [17]

    Thomson D, Zilkie A, Bowers J E, Komljenovic T, Reed G T, Vivien L, Marris-Morini D, Cassan E, Virot L, Fédéli J M, Hartmann J M, Schmid J H, Xu D X, Boeuf F, O’Brien P, Mashanovich G Z, Nedeljkovic M 2016 J. Optics 18 073003Google Scholar

    [18]

    Zhou Z, Ou X, Fang Y, Alkhazraji E, Xu R, Wan Y, Bowers J E 2023 eLight 3 1Google Scholar

    [19]

    Liang D, Srinivasan S, Descos A, Zhang C, Kurczveil G, Huang Z, Beausoleil R 2021 Optica 8 591Google Scholar

    [20]

    Xu B, Wang G, Du Y, Miao Y, Li B, Zhao X, Lin H, Yu J, Su J, Dong Y, Ye T, Radamson H H 2022 Nanomaterials 12 2704Google Scholar

    [21]

    Tatebayashi J, Nishioka M, Arakawa Y 2002 J. Cryst. Growth 237 1296

    [22]

    ZhangY, Yang C A, Shang J M, Chen Y, Niu Z 2021 Chin. Phys. B 30 094204Google Scholar

    [23]

    Kumar R, Saha J, Tongbram B, Panda D, Gourishetty R, Kumar R, Gazi S A, Chakrabarti S 2023 Curr. Appl. Phys. 47 72Google Scholar

    [24]

    Pötschke K, Müller-Kirsch L, Heitz R, Sellin R L, Pohl U W, Bimberg D, Zakharov N, Werner P 2004 Physica E 21 606Google Scholar

    [25]

    Kim Y, Chu R J, Ryu G, Woo S, Lung Q N D, Ahn D H, Han J H, Choi W J, Jung D 2022 ACS Appl. Mater. Interfaces 14 45051Google Scholar

    [26]

    Fathpour S, Mi Z, Bhattacharya P, Kovsh A R, Mikhrin S S, Krestnikov I L, Kozhukhov A V, Ledentsov N N 2004 Appl. Phys. Lett. 85 5164Google Scholar

  • 图 1  GaAs基InAs量子点激光器结构示意图

    Fig. 1.  Schematic diagram of GaAs based InAs quantum dot laser structure.

    图 2  GaAs基InAs量子点激光器截面SEM图

    Fig. 2.  Cross section SEM of InAs quantum dot laser on GaAs.

    图 3  InAs量子点2 µm×2 µm的AFM图像 (a) DAL-8; (b) DAL-16; (c) DAL-32; (d) DAL-0

    Fig. 3.  AFM images of InAs quantum dots 2 µm×2 µm: (a) DAL-8; (b) DAL-16; (c) DAL-32; (d) DAL-0.

    图 4  不同生长方式的InAs量子点的PL光谱

    Fig. 4.  PL spectra of InAs quantum dots with different growth methods.

    图 5  连续工作模式下两种InAs量子点激光器的I-V-P特性曲线 (a) DAL-0; (b) DAL-32

    Fig. 5.  I-V-P characteristic curves of two InAs quantum dots lasers in CW mode: (a) DAL-0; (b) DAL-32.

    图 6  温度20 ℃、注入电流250 mA时, 两种InAs量子点激光器的发射光谱

    Fig. 6.  Emission spectra of two InAs quantum dots lasers at the temperature of 20 ℃ and injection current of 250 mA.

    图 7  两种InAs量子点激光器特征温度的变化曲线

    Fig. 7.  Characteristic temperature curves of two InAs quantum dots lasers.

    Baidu
  • [1]

    王海玲, 王霆, 张建军 2019 68 117301Google Scholar

    Wang H L, Wang T, Zhang J J 2019 Acta Phys. Sin. 68 117301Google Scholar

    [2]

    OzakiN, Ikuno D 2022 J. Cryst. Growth 588 126657Google Scholar

    [3]

    Yang J, Liu Z, Jurczak P, Tang M, Li K, Pan S, Sanchez A, Beanland R, Zhang Z C, Wang H 2021 J. Phys. D Appl. Phys. 54 035103Google Scholar

    [4]

    王霆, 张建军, 刘会赟 2015 64 204209Google Scholar

    Wang T, Zhang J J, Liu H Y 2015 Acta Phys. Sin. 64 204209Google Scholar

    [5]

    Wang Z, Qi W, Feng Q, Wang T, Zhang J 2021 Opt. Express 29 674

    [6]

    Bimberg D, Pohl U W 2011 Mater. Today 14 388Google Scholar

    [7]

    Ruiz-Marín N, Reyes D F, Stanojević L, BenT, Braza V, Gallego-Carro A, Bárcena-González G, Ulloa J M, González D 2022 Appl. Surf. Sci. 573 151572Google Scholar

    [8]

    田芃, 黄黎蓉, 费淑萍, 余奕, 潘彬, 徐巍, 黄德修 2010 59 5738Google Scholar

    Tian P, Huang L R, Fei S P, Yu Y, Pan B, Xu W, Huang D X 2010 Acta Phys. Sin. 59 5738Google Scholar

    [9]

    Norman J C, Jung D, Zhang Z, Wan Y, Liu S, Shang C, Herrick R W, Chow W W, Gossard A C, Bowers J E 2019 IEEE J. Quantum Elect. 55 1Google Scholar

    [10]

    Arsenijević D, Bimberg D 2017 Green Photonics and Electronics (Cham, Switzerland: Springer International Publishing) pp75–106

    [11]

    Alexander R R, Childs D T D, Agarwal H, Groom K M, Liu H Y, Hopkinson M, Hogg R A, Ishida M, Yamamoto T, Sugawara M, Arakawa Y, Badcock T J, Royce R J, Mowbray D J 2007 IEEE J. Quantum Elect. 43 1129Google Scholar

    [12]

    Coleman J J, Young J D, Garg A 2011 J. Lightwave Technol. 29 499Google Scholar

    [13]

    Sugawara M, Usami M 2009 Nat. Photonics 3 30Google Scholar

    [14]

    Yamaguchi K, Yujobo K, Kaizu T 2000 Jpn. J. Appl. Phys. 39 L1245Google Scholar

    [15]

    Leonard D, Krishnamurthy M, Reaves C M, Denbaars S P, Petroff P M 1993 Appl. Phys. Lett. 63 3203Google Scholar

    [16]

    Yang J, Tang M, Chen S, Liu H Y 2023 Light. Sci. Appl. 12 16Google Scholar

    [17]

    Thomson D, Zilkie A, Bowers J E, Komljenovic T, Reed G T, Vivien L, Marris-Morini D, Cassan E, Virot L, Fédéli J M, Hartmann J M, Schmid J H, Xu D X, Boeuf F, O’Brien P, Mashanovich G Z, Nedeljkovic M 2016 J. Optics 18 073003Google Scholar

    [18]

    Zhou Z, Ou X, Fang Y, Alkhazraji E, Xu R, Wan Y, Bowers J E 2023 eLight 3 1Google Scholar

    [19]

    Liang D, Srinivasan S, Descos A, Zhang C, Kurczveil G, Huang Z, Beausoleil R 2021 Optica 8 591Google Scholar

    [20]

    Xu B, Wang G, Du Y, Miao Y, Li B, Zhao X, Lin H, Yu J, Su J, Dong Y, Ye T, Radamson H H 2022 Nanomaterials 12 2704Google Scholar

    [21]

    Tatebayashi J, Nishioka M, Arakawa Y 2002 J. Cryst. Growth 237 1296

    [22]

    ZhangY, Yang C A, Shang J M, Chen Y, Niu Z 2021 Chin. Phys. B 30 094204Google Scholar

    [23]

    Kumar R, Saha J, Tongbram B, Panda D, Gourishetty R, Kumar R, Gazi S A, Chakrabarti S 2023 Curr. Appl. Phys. 47 72Google Scholar

    [24]

    Pötschke K, Müller-Kirsch L, Heitz R, Sellin R L, Pohl U W, Bimberg D, Zakharov N, Werner P 2004 Physica E 21 606Google Scholar

    [25]

    Kim Y, Chu R J, Ryu G, Woo S, Lung Q N D, Ahn D H, Han J H, Choi W J, Jung D 2022 ACS Appl. Mater. Interfaces 14 45051Google Scholar

    [26]

    Fathpour S, Mi Z, Bhattacharya P, Kovsh A R, Mikhrin S S, Krestnikov I L, Kozhukhov A V, Ledentsov N N 2004 Appl. Phys. Lett. 85 5164Google Scholar

  • [1] 曾莹, 佘彦超, 张蔚曦, 杨红. 纳米光纤-半导体量子点分子耦合系统中光孤子的存储与读取.  , 2024, 73(16): 164202. doi: 10.7498/aps.73.20240184
    [2] 尤明慧, 李雪, 李士军, 刘国军. 晶格匹配InAs/AlSb超晶格材料的分子束外延生长研究.  , 2023, 72(1): 014203. doi: 10.7498/aps.72.20221383
    [3] 刘珂, 马文全, 黄建亮, 张艳华, 曹玉莲, 黄文军, 赵成城. 含有AlGaAs插入层的InAs/GaAs三色量子点红外探测器.  , 2016, 65(10): 108502. doi: 10.7498/aps.65.108502
    [4] 白继元, 贺泽龙, 李立, 韩桂华, 张彬林, 姜平晖, 樊玉环. 两端线型双量子点分子Aharonov-Bohm干涉仪电输运.  , 2015, 64(20): 207304. doi: 10.7498/aps.64.207304
    [5] 杨文献, 季莲, 代盼, 谭明, 吴渊渊, 卢建娅, 李宝吉, 顾俊, 陆书龙, 马忠权. 基于分子束外延生长的1.05 eV InGaAsP的超快光学特性研究.  , 2015, 64(17): 177802. doi: 10.7498/aps.64.177802
    [6] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长.  , 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [7] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运.  , 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [8] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制.  , 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [9] 苏少坚, 张东亮, 张广泽, 薛春来, 成步文, 王启明. Ge(001)衬底上分子束外延生长高质量的Ge1-xSnx合金.  , 2013, 62(5): 058101. doi: 10.7498/aps.62.058101
    [10] 李霞, 冯东海, 潘贤群, 贾天卿, 单璐繁, 邓莉, 孙真荣. 室温下CdSe胶体量子点超快自旋动力学.  , 2012, 61(20): 207202. doi: 10.7498/aps.61.207202
    [11] 李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展. CdTe/CdS核壳结构量子点超快载流子动力学.  , 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [12] 胡懿彬, 郝智彪, 胡健楠, 钮浪, 汪莱, 罗毅. 分子束外延生长InGaN/AlN量子点的组分研究.  , 2012, 61(23): 237804. doi: 10.7498/aps.61.237804
    [13] 张学贵, 王茺, 鲁植全, 杨杰, 李亮, 杨宇. 离子束溅射自组装Ge/Si量子点生长的演变.  , 2011, 60(9): 096101. doi: 10.7498/aps.60.096101
    [14] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜.  , 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [15] 宋国峰, 汪卫敏, 蔡利康, 郭宝山, 王青, 徐云, 韦欣, 刘运涛. 表面等离子激元调制的亚波长束斑半导体激光器.  , 2010, 59(7): 5105-5109. doi: 10.7498/aps.59.5105
    [16] 常俊, 黎华, 韩英军, 谭智勇, 曹俊诚. 太赫兹量子级联激光器材料生长及表征.  , 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
    [17] 蔡承宇, 周旺民. Ge/Si半导体量子点的应变分布与平衡形态.  , 2007, 56(8): 4841-4846. doi: 10.7498/aps.56.4841
    [18] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计.  , 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [19] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器.  , 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [20] 徐晓华, 牛智川, 倪海桥, 徐应强, 张 纬, 贺正宏, 韩 勤, 吴荣汉, 江德生. 分子束外延生长的(GaAs1-xSbx/InyGa1-yAs)/GaAs量子阱光致发光谱研究.  , 2005, 54(6): 2950-2954. doi: 10.7498/aps.54.2950
计量
  • 文章访问数:  3095
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-23
  • 修回日期:  2023-03-27
  • 上网日期:  2023-04-15
  • 刊出日期:  2023-06-20

/

返回文章
返回
Baidu
map