-
碳纳米管本身所具有的卓越导热性能, 使得基于碳纳米管所制备的纳米流体也同样具有较高的热导率, 同时在碳纳米管表面添加官能团能够有效增强水/碳纳米管纳米流体的稳定性. 本文将羟基化碳纳米管构建成为Janus颗粒, 基于平衡分子动力学模拟方法, 计算了基于羟基化碳纳米管的纳米流体热导率, 并对其导热机理进行分析. 计算结果表明, 在基液吸附层密度增长、颗粒布朗运动增强以及界面热阻降低等因素的共同作用下, 基于羟基化碳纳米管的纳米流体具有比普通碳纳米管纳米流体更强的导热性能. 羟基化碳纳米管构建的Janus颗粒在基液中具备更强的布朗扩散能力, 因而可以进一步提高水/碳纳米管纳米流体的热导率. 本文揭示了基于羟基化Janus碳纳米管的纳米流体导热机理, 为新型传热工质制备提供参考.The excellent thermal conductivity of the carbon nanotubes leads to the high thermal conductivity of the nanofluids prepared by carbon nanotubes. The addition of functional groups on the surface of the carbon nanotubes canimprove the stability of the water/CNT nanofluids. The excellent diffusion properties of the Janus particles result in the elevated thermal conductivity of the Janus nanofluids. In thiswork, hydroxylated single-walled carbon nanotube (SWCNT-OH) particles, as Janus particles, are constructed and a water/SWCNT-OH-Janus nanofluid model is proposed by introducing SWCNT-OH particles into a base fluid (water). By using equilibrium molecular dynamics simulations, the thermal conductivity of nanofluids is calculated. The mechanism of the enhanced thermal conductivity is investigated by analyzing the solid-like liquid layers formed by liquid molecules around particles, Brownian motion of CNT particles, and CNT/water interfacial thermal resistance. It can be concluded that the thermal conductivity of the nanofluids with SWCNT-OH particles can be enhanced compared with that of the nanofluids with normal SWCNT particles. The hydrogen bond between hydroxyl group and water molecules results in the adsorption of water molecules onto the surface of carbon nanotube. This process increases the density of the liquid adsorption layer on the CNT surface, thereby enhancing the effect of the solid-liquid layer. The hydroxyl groups on the CNT surface degrade the solid-liquid interfacial thermal resistance, which promotes the heat transfer within the nanofluids. Moreover, the hydroxyl groups also enhance the interaction between the CNT particles and the water molecules,leading to stronger Brownian motionof particles. The combination of these factors will be responsible for the enhancement thermal conductivity of the water/SWCNT-OH nanofluids.For SWCNT-OH-Janus nanofluids, the thermal conductivity can be further enhanced, owing to the strong Brownian motion of the Janus particles.
-
Keywords:
- nanofluids /
- single-walled carbon nanotubes /
- Janus particles /
- hydroxide /
- molecular dynamics simulation
[1] Liu M S, Lin M C, Tsai C Y, Wang C C 2006 Int. J. Heat Mass Transf. 49 3028
Google Scholar
[2] Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A 2001 Appl. Phys. Lett. 79 2252
Google Scholar
[3] Han X F, Lu L W, Yan S Y, Yang X H, Tian R, Zhao X Y 2021 J. Therm. Sci. 30 1581
Google Scholar
[4] Ishii K, Ogiyama T, Fumoto K, Nishina Y 2024 Appl. Phys. Lett. 125 023104
Google Scholar
[5] 王军, 崔鑫, 夏国栋 2023 北京工业大学学报 49 1116
Google Scholar
Wang J, Cui X, Xia G D 2023 J. Beijing Univ. Technol. 49 1116
Google Scholar
[6] Xuan Y M, Li Q 2000 Int. J. Heat Mass Transf. 21 58
Google Scholar
[7] Liu B, Liang W H, Luo Z M, Sarvar S, Fereidooni L, Kasaeian A 2024 Mol. Liq. 414 126052
Google Scholar
[8] Xuan Y M, Duan H L, Li Q 2014 RSC Adv. 4 16206
Google Scholar
[9] Rapp B, Hussam A 2023 J. Appl. Phys. 133 134302
Google Scholar
[10] Dai J H, Zhai Y L, Li Z H, Wang H 2024 J. Mol. Liq. 400 124518
Google Scholar
[11] Liu W W, Wang J, Xia G D, Li Z G 2023 Phys. Fluids 35 083316
Google Scholar
[12] Liu W W, Cui J, Wang J, Xia G D, Li Z G 2023 Phys. Fluids 35 032004
Google Scholar
[13] Yu W, Choi S U S 2004 J. Nanopart. Res. 6 355
Google Scholar
[14] 谢华清, 奚同庚, 王锦昌 2003 52 1444
Google Scholar
Xie H Q, Xi T G, Wang J C 2003 Acta Phys. Sin. 52 1444
Google Scholar
[15] Xue L, Keblinski P, Phillpot S R, Choi S U S, Eastman J A 2004 Int. J. Heat Mass Transf. 47 4277
Google Scholar
[16] 张智奇, 钱胜, 王瑞金, 朱泽飞 2019 68 054401
Google Scholar
Zhang Z Q, Qian S, Wang R J, Zhu Z F 2019 Acta Phys. Sin. 68 054401
Google Scholar
[17] Karthik V, Sahoo S, Pabi S K, Ghosh S 2013 Int. J. Therm. Sci. 64 53
Google Scholar
[18] Cui W Z, Shen Z J, Yang J G, Wu S H 2015 Appl. Therm. Eng. 76 261
Google Scholar
[19] 李屹同, 沈谅平, 王浩, 汪汉斌 2013 62 124401
Google Scholar
Li YT, Shen L P, Wang H, Wang H B 2013 Acta Phys. Sin. 62 124401
Google Scholar
[20] Lenin R, Joy P A, Bera C 2021 J. Mol. Liq. 338 116929
Google Scholar
[21] 刘旺旺, 张克学, 王军, 夏国栋 2024 73 075101
Google Scholar
Liu W W, Zhang K X, Wang J, Xia G D 2024 Acta Phys. Sin. 73 075101
Google Scholar
[22] Roni M R H, Shahadat M R B, Morshed A M M 2021 Micro Nano Lett. 16 221
Google Scholar
[23] Jabbari F, Rajabpour A, Saedodin S 2017 Chem. Eng. Sci. 174 67
Google Scholar
[24] Cui W Z, Shen Z J, Yang J G, Wu S H, Bai M L 2014 RSC Adv. 4 55580
Google Scholar
[25] Kamalvand M, Karami M 2013 Int. J. Therm. Sci. 65 189
Google Scholar
[26] 侯泉文, 曹炳阳, 过增元 2009 58 7809
Google Scholar
Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809
Google Scholar
[27] Jabbari F, Rajabpour A, Saedodin S 2021 Microfluid. Nanofluid. 25 102
Google Scholar
[28] Xing M B, Yu J L, Wang R X 2015 Appl. Therm. Eng. 87 344
Google Scholar
[29] Li X K, Chen W J, Zou C J 2020 Powder Technol. 361 957
Google Scholar
[30] 陈文哲, 王霜, 翟玉玲, 李舟航 2023 化工进展 42 5700
Google Scholar
Chen W Z, Wang S, Zhai Y L, Li Z H 2023 Chem. Ind. Eng. Prog. 42 5700
Google Scholar
[31] Pang C W, Jung J, Kang Y T 2014 Int. J. Heat Mass Transf. 72 392
Google Scholar
[32] Hou J M, Shao C, Huang L Z, Du J Y, Wang R J 2023 Powder Technol. 430 119005
Google Scholar
[33] Zhou L, Zhu J W, Zhao Y F, Ma H H 2022 Int. J. Heat Mass Transf. 183 122124
Google Scholar
[34] Rennhofer H, Zanghellini B 2021 Nanomaterials 11 1469
Google Scholar
[35] Premalatha M, Jeevaraj A K S 2017 Part. Sci. Technol. 36 523
Google Scholar
[36] Rathinavel S, Priyadharshini K, Panda D 2021 Mater. Sci. Eng. B 268 115095
Google Scholar
[37] Zhang X, Zhang Y H, Yan Y R, Chen Z H 2022 Sol. Energy Mater. Sol. Cells 236 111546
Google Scholar
[38] Cui X, Wang J, Xia G D 2022 Nanoscale 14 99
Google Scholar
[39] Kobayashi Y, Arai N 2019 J. Electrochem. Soc. 166 B3223
Google Scholar
[40] Sarkar S, Selvam R P 2007 J. Appl. Phys. 102 074302
Google Scholar
[41] Tersoff J 1988 Phys. Rev. B 37 6991
Google Scholar
[42] Rudyak V Y, Krasnolutskii S L 2017 Tech. Phys. 62 1456
Google Scholar
[43] Huang J, Sang L X, Yang Q F, Wu Y T 2024 Sol. Energy Mater. Sol. Cells 277 113150
Google Scholar
[44] Koo J, Kleinstreuer C 2004 J. Nanopart. Res. 6 577
Google Scholar
[45] Zhang C Z, Puligheddu M, ZhangL F, Car R, Galli G 2023 J. Phys. Chem. B 127 7011
Google Scholar
[46] Wang R J, Qian S, Zhang Z Q 2018 Int. J. Heat Mass Transf. 127 1138
Google Scholar
-
表 1 亲疏水性不同的SWCNT-OH颗粒
Table 1. SWCNT-OH particles with different hydrophilicity.
颗粒类型 SWCNT-OH颗粒 羟基数量 0 8 16 24 32 羟基密度/% 0 5.3 10.6 16.0 21.3 示意图 表 2 亲疏水性不同的SWCNT-OH-Janus颗粒
Table 2. SWCNT-OH-Janus particles with different hydrophilicity.
颗粒类型 SWCNT-OH-Janus颗粒 羟基数量 0 4 8 12 16 羟基密度/% 0 5.3 10.6 16.0 21.3 示意图 -
[1] Liu M S, Lin M C, Tsai C Y, Wang C C 2006 Int. J. Heat Mass Transf. 49 3028
Google Scholar
[2] Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A 2001 Appl. Phys. Lett. 79 2252
Google Scholar
[3] Han X F, Lu L W, Yan S Y, Yang X H, Tian R, Zhao X Y 2021 J. Therm. Sci. 30 1581
Google Scholar
[4] Ishii K, Ogiyama T, Fumoto K, Nishina Y 2024 Appl. Phys. Lett. 125 023104
Google Scholar
[5] 王军, 崔鑫, 夏国栋 2023 北京工业大学学报 49 1116
Google Scholar
Wang J, Cui X, Xia G D 2023 J. Beijing Univ. Technol. 49 1116
Google Scholar
[6] Xuan Y M, Li Q 2000 Int. J. Heat Mass Transf. 21 58
Google Scholar
[7] Liu B, Liang W H, Luo Z M, Sarvar S, Fereidooni L, Kasaeian A 2024 Mol. Liq. 414 126052
Google Scholar
[8] Xuan Y M, Duan H L, Li Q 2014 RSC Adv. 4 16206
Google Scholar
[9] Rapp B, Hussam A 2023 J. Appl. Phys. 133 134302
Google Scholar
[10] Dai J H, Zhai Y L, Li Z H, Wang H 2024 J. Mol. Liq. 400 124518
Google Scholar
[11] Liu W W, Wang J, Xia G D, Li Z G 2023 Phys. Fluids 35 083316
Google Scholar
[12] Liu W W, Cui J, Wang J, Xia G D, Li Z G 2023 Phys. Fluids 35 032004
Google Scholar
[13] Yu W, Choi S U S 2004 J. Nanopart. Res. 6 355
Google Scholar
[14] 谢华清, 奚同庚, 王锦昌 2003 52 1444
Google Scholar
Xie H Q, Xi T G, Wang J C 2003 Acta Phys. Sin. 52 1444
Google Scholar
[15] Xue L, Keblinski P, Phillpot S R, Choi S U S, Eastman J A 2004 Int. J. Heat Mass Transf. 47 4277
Google Scholar
[16] 张智奇, 钱胜, 王瑞金, 朱泽飞 2019 68 054401
Google Scholar
Zhang Z Q, Qian S, Wang R J, Zhu Z F 2019 Acta Phys. Sin. 68 054401
Google Scholar
[17] Karthik V, Sahoo S, Pabi S K, Ghosh S 2013 Int. J. Therm. Sci. 64 53
Google Scholar
[18] Cui W Z, Shen Z J, Yang J G, Wu S H 2015 Appl. Therm. Eng. 76 261
Google Scholar
[19] 李屹同, 沈谅平, 王浩, 汪汉斌 2013 62 124401
Google Scholar
Li YT, Shen L P, Wang H, Wang H B 2013 Acta Phys. Sin. 62 124401
Google Scholar
[20] Lenin R, Joy P A, Bera C 2021 J. Mol. Liq. 338 116929
Google Scholar
[21] 刘旺旺, 张克学, 王军, 夏国栋 2024 73 075101
Google Scholar
Liu W W, Zhang K X, Wang J, Xia G D 2024 Acta Phys. Sin. 73 075101
Google Scholar
[22] Roni M R H, Shahadat M R B, Morshed A M M 2021 Micro Nano Lett. 16 221
Google Scholar
[23] Jabbari F, Rajabpour A, Saedodin S 2017 Chem. Eng. Sci. 174 67
Google Scholar
[24] Cui W Z, Shen Z J, Yang J G, Wu S H, Bai M L 2014 RSC Adv. 4 55580
Google Scholar
[25] Kamalvand M, Karami M 2013 Int. J. Therm. Sci. 65 189
Google Scholar
[26] 侯泉文, 曹炳阳, 过增元 2009 58 7809
Google Scholar
Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809
Google Scholar
[27] Jabbari F, Rajabpour A, Saedodin S 2021 Microfluid. Nanofluid. 25 102
Google Scholar
[28] Xing M B, Yu J L, Wang R X 2015 Appl. Therm. Eng. 87 344
Google Scholar
[29] Li X K, Chen W J, Zou C J 2020 Powder Technol. 361 957
Google Scholar
[30] 陈文哲, 王霜, 翟玉玲, 李舟航 2023 化工进展 42 5700
Google Scholar
Chen W Z, Wang S, Zhai Y L, Li Z H 2023 Chem. Ind. Eng. Prog. 42 5700
Google Scholar
[31] Pang C W, Jung J, Kang Y T 2014 Int. J. Heat Mass Transf. 72 392
Google Scholar
[32] Hou J M, Shao C, Huang L Z, Du J Y, Wang R J 2023 Powder Technol. 430 119005
Google Scholar
[33] Zhou L, Zhu J W, Zhao Y F, Ma H H 2022 Int. J. Heat Mass Transf. 183 122124
Google Scholar
[34] Rennhofer H, Zanghellini B 2021 Nanomaterials 11 1469
Google Scholar
[35] Premalatha M, Jeevaraj A K S 2017 Part. Sci. Technol. 36 523
Google Scholar
[36] Rathinavel S, Priyadharshini K, Panda D 2021 Mater. Sci. Eng. B 268 115095
Google Scholar
[37] Zhang X, Zhang Y H, Yan Y R, Chen Z H 2022 Sol. Energy Mater. Sol. Cells 236 111546
Google Scholar
[38] Cui X, Wang J, Xia G D 2022 Nanoscale 14 99
Google Scholar
[39] Kobayashi Y, Arai N 2019 J. Electrochem. Soc. 166 B3223
Google Scholar
[40] Sarkar S, Selvam R P 2007 J. Appl. Phys. 102 074302
Google Scholar
[41] Tersoff J 1988 Phys. Rev. B 37 6991
Google Scholar
[42] Rudyak V Y, Krasnolutskii S L 2017 Tech. Phys. 62 1456
Google Scholar
[43] Huang J, Sang L X, Yang Q F, Wu Y T 2024 Sol. Energy Mater. Sol. Cells 277 113150
Google Scholar
[44] Koo J, Kleinstreuer C 2004 J. Nanopart. Res. 6 577
Google Scholar
[45] Zhang C Z, Puligheddu M, ZhangL F, Car R, Galli G 2023 J. Phys. Chem. B 127 7011
Google Scholar
[46] Wang R J, Qian S, Zhang Z Q 2018 Int. J. Heat Mass Transf. 127 1138
Google Scholar
计量
- 文章访问数: 568
- PDF下载量: 18
- 被引次数: 0