搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面羟基对碳纳米管摩擦行为和能量耗散的影响

王世伟 朱朋哲 李瑞

引用本文:
Citation:

界面羟基对碳纳米管摩擦行为和能量耗散的影响

王世伟, 朱朋哲, 李瑞

Influences of hydroxyl groups on friction behavior and energy dissipation of carbon nanotube

Wang Shi-Wei, Zhu Peng-Zhe, Li Rui
PDF
导出引用
  • 本文采用分子动力学模拟研究了羟基对碳纳米管摩擦和能量耗散方式的影响.研究结果表明:由于界面间氢键的形成,碳纳米管所受的平均摩擦力明显增大;随着羟基比例的改变,界面间氢键的数量与摩擦力的变化趋势一致;碳纳米管的手性角对摩擦力有一定的影响,扶手椅型碳纳米管所受的摩擦力比其他类型的碳纳米管的大;直径对摩擦力的影响较大,直径越大界面间的摩擦力越大,其原因是大直径的碳纳米管底部变平导致界面接触面积增大;界面接枝羟基后,体系的声子态密度中出现羟基的振动峰;随羟基比例的增加,羟基的振动在能量耗散中起到更为重要的作用,当碳纳米管和硅基底的羟基比例为10%/20%时,体系能量耗散的主要途径由碳纳米管和硅基底的振动转变为羟基的振动.
    In this paper, the influences of hydroxyl groups between interfaces on friction and energy dissipation are investigated by molecular dynamics simulations. The simulation systems include horizontal oriented carbon nanotube and Si substrate. The hydroxyl groups are grafted only on the substrates or between interfaces in different cases. The simulation procedure is as follows. First, the structure of the simulation system is optimized through energy minimization. Then the relaxation is conducted to ensure the the system reaches an equilibrium state. Finally, carbon nanotube moves at a constant speed along the x direction on the Si substrate. The results show that the average friction on carbon nanotube increases significantly due to the formation of hydrogen bonds between interfaces. The number of hydrogen bonds between interfaces increases with hydroxyl group ratio increasing, which is similar to the trend of friction. The chiral angle of carbon nanotube has a certain effect on friction. The friction on the armchair carbon nanotube is larger than on other types of carbon nanotubes. The diameter has an obvious influence on friction. The friction between the interfaces increases with the diameter of carbon nanotube increasing. The reason is that carbon nanotube with a large diameter becomes flattened at the bottom, which leads to the increase of contact area between interfaces. New peaks appear in the phonon state density of simulation system due to the introduction of hydroxyl groups. With the increase of hydroxyl groups ratio, the values of corresponding peaks of hydroxyl groups in the phonon state density become higher, which indicates that the vibration of hydroxyl groups plays a more important role in energy dissipation. When the hydroxyl group ratio on the carbon nanotube and Si substrate reach 10% and 20% respectively, most energy dissipates through the vibration of hydroxyl groups rather than the vibration of the carbon nanotube and Si substrate. The total energy of the system increases with hydroxyl group ratio increasing, and the potential energy of carbon nanotube also increases with the augment of hydroxyl group ratio on the carbon nanotube. However, when the hydroxyl group ratio on the carbon nanotube remains constant, the potential energy of carbon nanotube decreases with the increase of hydroxyl group ratio on Si substrate. This phenomenon becomes obvious when the hydroxyl group ratio is high. The reason can be attributed to the larger interaction between the carbon nanotube and Si substrate. In general, the energy dissipation of the system is related to the total energy, but the energy dissipating through the carbon nanotube may become less with the increase of total energy.
      通信作者: 李瑞, lirui@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51475039,51405337)资助的课题.
      Corresponding author: Li Rui, lirui@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51475039, 51405337).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Scarselli M, Castrucci P, de Crescenzi M 2012 J. Phys.: Condens. Matter 24 313202

    [3]

    Liew K M, Wong C H, He X Q, Tan M J, Meguid S A 2004 Phys. Rev. B 69 1738

    [4]

    van der Wal R L, Miyoshi K, Street K, Tomasek A, Peng H, Liu Y, Margrave J, Khabashesku V 2005 Wear 259 738

    [5]

    Kwon S, Ko J H, Jeon K J, Kim Y H, Park J Y 2012 Nano Lett. 12 6043

    [6]

    Ko J H, Kwon S, Byun I S, Jin S C, Park B H, Kim Y H, Park J Y 2013 Tribol. Lett. 50 137

    [7]

    Dong Y L, Wu X W, Martini A 2013 Nanotechnology 24 375701

    [8]

    Li R, Mi J X 2017 Acta Phys. Sin. 66 046101 (in Chinese) [李瑞, 密俊霞 2017 66 046101]

    [9]

    Wang L F, Ma T B, Hu Y Z, Wang H 2012 Phys. Rev. B 86 125436

    [10]

    Chen J, Ratera I, Park J Y, Salmeron M 2006 Phys Rev. Lett. 96 236102

    [11]

    Zheng X, Lei G, Yao Q, Li Q, Miao Z, Xie X, Qiao S, Wang G, Ma T, Di Z, Luo J, Wang X 2016 Nat. Commun. 7 13204

    [12]

    Eckstein K H, Hartleb H, Achsnich M M, Schöppler F, Hertel T 2017 ACS Nano 11 10401

    [13]

    Kim S Y, Park H S 2009 Appl. Phys. Lett. 94 101918

    [14]

    Hu Y Z, Ma T B, Wang H 2013 Friction 1 24

    [15]

    Wang Z J, Ma T B, Hu Y Z, Xu L, Wang H 2015 Friction 3 170

    [16]

    Kajita S, Tohyama M, Washizu H, Ohmori T, Watanabe H, Shikata S 2015 Tribology Online 10 156

    [17]

    Cannara R J, Brukman M J, Cimatu K, Sumant A V, Baldelli S, Carpick R W 2007 Sci. 318 780

    [18]

    Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X 2015 Environ. Sci. Technol. 49 4255

    [19]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.:Condes. Matter 14 783

    [20]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [21]

    Argyris D, Tummala N R, Striolo A, Cole D R 2008 J. Phys. Chem. C 112 13587

    [22]

    Hughes Z E, Shearer C J, Shapter J, Gale J D 2012 J. Phys. Chem. C 116 24943

    [23]

    Damm W, Frontera A, Tirado-Rives J, Jorgensen W L 1997 J. Comput. Chem. 18 1955

    [24]

    Ruoff R S, Hickman A P 1993 J. Phys. Chem. 97 2494

    [25]

    Mayo S L, Olafson B D, Goddard W A Ⅲ 1990 J. Phys. Chem. 94 8897

    [26]

    Plimpton S 1995 J. Comput. Phys 7 1

    [27]

    Dickey J M, Paskin A 1969 Phys. Rev. 188 1407

    [28]

    Dresselhaus M S, Dresselhaus G, Saito R, Jorio A 2005 Phys. Rep. 409 47

    [29]

    Yin Y, Vamivakas A N, Walsh A G, Cronin S B, Unl M S, Goldberg B B, Swan A K 2007 Phys. Rev. Lett. 98 037404

    [30]

    Hart T R, Aggarwal R L, Lax B 1970 Phys. Rev. B 1 638

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Scarselli M, Castrucci P, de Crescenzi M 2012 J. Phys.: Condens. Matter 24 313202

    [3]

    Liew K M, Wong C H, He X Q, Tan M J, Meguid S A 2004 Phys. Rev. B 69 1738

    [4]

    van der Wal R L, Miyoshi K, Street K, Tomasek A, Peng H, Liu Y, Margrave J, Khabashesku V 2005 Wear 259 738

    [5]

    Kwon S, Ko J H, Jeon K J, Kim Y H, Park J Y 2012 Nano Lett. 12 6043

    [6]

    Ko J H, Kwon S, Byun I S, Jin S C, Park B H, Kim Y H, Park J Y 2013 Tribol. Lett. 50 137

    [7]

    Dong Y L, Wu X W, Martini A 2013 Nanotechnology 24 375701

    [8]

    Li R, Mi J X 2017 Acta Phys. Sin. 66 046101 (in Chinese) [李瑞, 密俊霞 2017 66 046101]

    [9]

    Wang L F, Ma T B, Hu Y Z, Wang H 2012 Phys. Rev. B 86 125436

    [10]

    Chen J, Ratera I, Park J Y, Salmeron M 2006 Phys Rev. Lett. 96 236102

    [11]

    Zheng X, Lei G, Yao Q, Li Q, Miao Z, Xie X, Qiao S, Wang G, Ma T, Di Z, Luo J, Wang X 2016 Nat. Commun. 7 13204

    [12]

    Eckstein K H, Hartleb H, Achsnich M M, Schöppler F, Hertel T 2017 ACS Nano 11 10401

    [13]

    Kim S Y, Park H S 2009 Appl. Phys. Lett. 94 101918

    [14]

    Hu Y Z, Ma T B, Wang H 2013 Friction 1 24

    [15]

    Wang Z J, Ma T B, Hu Y Z, Xu L, Wang H 2015 Friction 3 170

    [16]

    Kajita S, Tohyama M, Washizu H, Ohmori T, Watanabe H, Shikata S 2015 Tribology Online 10 156

    [17]

    Cannara R J, Brukman M J, Cimatu K, Sumant A V, Baldelli S, Carpick R W 2007 Sci. 318 780

    [18]

    Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X 2015 Environ. Sci. Technol. 49 4255

    [19]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.:Condes. Matter 14 783

    [20]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [21]

    Argyris D, Tummala N R, Striolo A, Cole D R 2008 J. Phys. Chem. C 112 13587

    [22]

    Hughes Z E, Shearer C J, Shapter J, Gale J D 2012 J. Phys. Chem. C 116 24943

    [23]

    Damm W, Frontera A, Tirado-Rives J, Jorgensen W L 1997 J. Comput. Chem. 18 1955

    [24]

    Ruoff R S, Hickman A P 1993 J. Phys. Chem. 97 2494

    [25]

    Mayo S L, Olafson B D, Goddard W A Ⅲ 1990 J. Phys. Chem. 94 8897

    [26]

    Plimpton S 1995 J. Comput. Phys 7 1

    [27]

    Dickey J M, Paskin A 1969 Phys. Rev. 188 1407

    [28]

    Dresselhaus M S, Dresselhaus G, Saito R, Jorio A 2005 Phys. Rep. 409 47

    [29]

    Yin Y, Vamivakas A N, Walsh A G, Cronin S B, Unl M S, Goldberg B B, Swan A K 2007 Phys. Rev. Lett. 98 037404

    [30]

    Hart T R, Aggarwal R L, Lax B 1970 Phys. Rev. B 1 638

  • [1] 段浩炀, 杨柯欣, 曹义刚. 不同力程排斥相互作用胶体粒子系统的摩擦特性.  , 2024, 73(15): 156201. doi: 10.7498/aps.73.20231701
    [2] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟.  , 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [3] 杜清馨, 孙其诚, 丁红胜, 张国华, 范彦丽, 安飞飞. 垂直振动下干湿颗粒样品的体积模量与耗散.  , 2022, 71(18): 184501. doi: 10.7498/aps.71.20220329
    [4] 李鹏程, 唐重阳, 程亮, 胡永明, 肖湘衡, 陈万平. TiO2纳米粉在水中通过摩擦还原CO2.  , 2021, 70(21): 214601. doi: 10.7498/aps.70.20210210
    [5] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用.  , 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [6] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟.  , 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [7] 余田, 张国华, 孙其诚, 赵雪丹, 马文波. 垂直振动激励下颗粒材料有效质量和耗散功率的研究.  , 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [8] 何菲菲, 彭政, 颜细平, 蒋亦民. 振动颗粒混合物中的周期性分聚现象与能量耗散.  , 2015, 64(13): 134503. doi: 10.7498/aps.64.134503
    [9] 朱攀丞, 边庆勇, 李晋斌. 欧拉圆盘不同能量耗散机理之间的关联.  , 2015, 64(17): 174501. doi: 10.7498/aps.64.174501
    [10] 石彦立, 韩伟, 卢铁城, 陈军. 含羟基结构熔石英光电性质的第一性原理研究.  , 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [11] 王志萍, 朱云, 吴亚敏, 张秀梅. 质子与羟基碰撞的含时密度泛函理论研究.  , 2014, 63(2): 023401. doi: 10.7498/aps.63.023401
    [12] 李瑞, 孙丹海. 缺陷对碳纳米管摩擦与运动行为的影响.  , 2014, 63(5): 056101. doi: 10.7498/aps.63.056101
    [13] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散.  , 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [14] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算.  , 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [15] 李瑞, 胡元中, 王慧. Si表面间水平碳纳米管束的分子动力学模拟研究.  , 2011, 60(1): 016106. doi: 10.7498/aps.60.016106
    [16] 李姝丽, 张建民. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算.  , 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [17] 龚中良, 黄 平. 界面摩擦过程非连续能量耗散机理研究.  , 2008, 57(4): 2358-2362. doi: 10.7498/aps.57.2358
    [18] 袁剑辉, 袁晓博. 单壁碳纳米管弹性性质的羟基接枝效应.  , 2008, 57(6): 3666-3673. doi: 10.7498/aps.57.3666
    [19] 许中明, 黄 平. 摩擦微观能量耗散机理的复合振子模型研究.  , 2006, 55(5): 2427-2432. doi: 10.7498/aps.55.2427
    [20] 袁常青, 赵同军, 王永宏, 展 永. 有限体系能量耗散运动的功率谱分析.  , 2005, 54(12): 5602-5608. doi: 10.7498/aps.54.5602
计量
  • 文章访问数:  6848
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-08
  • 修回日期:  2018-03-15
  • 刊出日期:  2018-04-05

/

返回文章
返回
Baidu
map