搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlN:Er3+松树状纳米结构: 发光与磁性多功能材料

丁昕 田子峰 王秋实 刘才龙 崔航

引用本文:
Citation:

AlN:Er3+松树状纳米结构: 发光与磁性多功能材料

丁昕, 田子峰, 王秋实, 刘才龙, 崔航
cstr: 32037.14.aps.74.20241587

Pine-shaped AlN:Er3+ nanostructure: A multifunctional material with both luminescent and magnetic properties

DING Xin, TIAN Zifeng, WANG Qiushi, LIU Cailong, CUI Hang
cstr: 32037.14.aps.74.20241587
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用直流电弧等离子体法, 以Al粉和Er2O3粉为原料, 在氮气环境下, 成功制备出了具有松树状纳米结构的Er3+掺杂AlN (AlN:Er3+)材料. 通过X射线衍射、X射线光电子能谱、能量色散光谱、扫描电子显微镜、透射电子显微镜和高分辨率透射电子显微镜的分析, 详细测定了松树状纳米结构的成分、形貌特征和显微结构. 结果显示, 该材料呈现出典型的六方纤锌矿晶体结构, 其形态由主干与分支纳米线交织而成, 且证实Er3+成功掺入其晶格中. 光致发光光谱显示, AlN:Er3+能够发出强烈的绿光(~548 nm), 并伴有多个发光峰, 分别对应于Er3+内层4f电子跃迁的特征发光峰. 根据不同温度下热耦合能级(2H11/2/4S3/24I15/2)发光光谱强度的比值, 在温度为293 K时获得最高相对灵敏度, 为1.9×10–2 K–1. 磁学测量表明, AlN:Er3+显现出明显的室温铁磁性. 通过第一性原理计算后发现其磁矩主要由Al空位周围N原子的2p轨道电子自旋极化产生. AlN:Er3+松树状纳米结构在光电器件、温敏传感器以及稀磁半导体等多个领域展现出潜在的应用前景.
    Erbium-doped aluminum nitride (AlN:Er3+) pine-shaped nanostructures are synthesized, through a direct reaction between aluminum (Al) and erbium oxide (Er2O3) mixed powders in a nitrogen (N2) atmosphere, by using a direct current arc discharge plasma method. X-ray diffraction (XRD) analysis reveals that the diffraction peaks of AlN:Er3+ shift towards lower angles for the doped sample compared with those of undoped AlN, indicating lattice expansion due to Er3+ incorporation. X-ray photoelectron spectroscopy (XPS) confirms that Al, N, and Er are coexistent, while energy-dispersive X-ray spectroscopy (EDS) quantitatively shows that the atomic ratio for Al:N:Er is about 46.9∶52.8∶0.3. The nanostructures, resembling pine trees, are measured to be 5–10 μm in height and 1–3 μm in width, with branch nanowires extending 500 nm–1 μm in length and 50–100 nm in diameter. These branches, radiating at about 60° from the main trunk, are found to grow along the [100] direction of wurtzite-structured AlN, as evidenced by high-resolution transmission electron microscopy (HRTEM) showing lattice spacing of 0.27 nm corresponding to the (100) plane. Photoluminescence studies identify distinct emission peaks in the visible region (527, 548, and 679 nm) and near-infrared region (801, 871, and 977 nm), which is attributed to intra-4f electron transitions of Er3+ ions. The average lifetime of the excited state at 548 nm is measured to be 9.63 μs, slightly shorter than those of other Er3+-doped materials. The nanostructures demonstrate that the superior temperature sensing capability possesses a maximum relative sensitivity of 1.9×10–2 K–1 at 293 K, based on the fluorescence intensity ratio of thermal-coupled levels (2H11/2/4S3/2). Magnetic characterization reveals that the room-temperature ferromagnetism has a saturation magnetization of 0.055 emu/g and a coercive field of 49 Oe, with a Curie temperature exceeding 300 K, which shows the potential for room-temperature spintronic applications. First-principle calculations attribute the observed ferromagnetism to Al vacancies, whose formation energy is significantly reduced by Er doping, leading to a high concentration of Al vacancies. These findings highlight the potential of AlN:Er3+ pine-shaped nanostructures in various applications, including optoelectronics, temperature sensing, and dilute magnetic semiconductors.
      通信作者: 王秋实, wang_jiu_jiu@foxmail.com
    • 基金项目: 国家重点研发计划(批准号: 2023YFA1406200)和国家自然科学基金(批准号: 11874174)资助的课题.
      Corresponding author: WANG Qiushi, wang_jiu_jiu@foxmail.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1406200) and the National Natural Science Foundation of China (Grant No. 11874174).
    [1]

    李志杰, 田鸣, 贺连龙 2011 60 098101Google Scholar

    Li Z J, Tian M, He L L 2011 Acta Phys. Sin. 60 098101Google Scholar

    [2]

    蓝雷雷, 胡新宇, 顾广瑞, 姜丽娜, 吴宝嘉 2013 62 217504Google Scholar

    Lan L L, Hu X Y, Gu G R, Jiang L N, Wu B J 2013 Acta Phys. Sin. 62 217504Google Scholar

    [3]

    程赛, 吕惠民, 石振海, 崔静雅 2012 61 126201Google Scholar

    Cheng S, Lv H M, Shi Z H, Cui J Y 2012 Acta Phys. Sin. 61 126201Google Scholar

    [4]

    余森, 许晟瑞, 陶鸿昌, 王海涛, 安瑕, 杨赫, 许钪, 张进成, 郝跃 2024 73 196101Google Scholar

    Yu S, Xu S R, Tao H C, Wang H T, An X, Yang H, Xu K, Zhang J C, Hao Y 2024 Acta Phys. Sin. 73 196101Google Scholar

    [5]

    赵罡, 梁汉普, 段益峰 2023 72 096301Google Scholar

    Zhao G, Liang H P, Duan Y F 2023 Acta Phys. Sin. 72 096301Google Scholar

    [6]

    Liu H, Shao P F, Chen S L, Tao T, Yan Y, Xie Z L, Liu B, Chen D J, Lu H, Zhang R, Wang K 2024 Chin. Phys. B 33 106801Google Scholar

    [7]

    Jia W, Han P D, Chi M, Dang S H, Xu B S, Liu X G 2007 J. Appl. Phys. 101 113918Google Scholar

    [8]

    Nepal N, Nakarmi M L, Jang H U, Lin J Y, Jiang H X 2006 Appl. Phys. Lett. 89 192111Google Scholar

    [9]

    Zhao H L, Zou Z L, Yao J, Guo S W, Wang T, Shen X M, Fu Y C, He H 2021 Optik 243 167455Google Scholar

    [10]

    Li X, Wang X D, Ma H, Chen F F, Zeng X H 2019 Chin. Opt. Lett. 17 111602Google Scholar

    [11]

    Wang D, Wang X D, Ma H, Gao X D, Chen J F, Zheng S N, Mao H M, Chen H J, Zeng X H, Xu K 2022 Opt. Mater. 128 112366Google Scholar

    [12]

    Ma H, Wang X D, Chen F F, Chen J F, Zeng X H, Gao X D, Wang D, Mao H M, Xu K 2021 J. Lumin. 236 118082Google Scholar

    [13]

    Vermeersch R, Jacopin G, Robin E, Pernot J, Gayral B, Daudin B 2023 Appl. Phys. Lett. 122 091106Google Scholar

    [14]

    Elhamra F, Rougab M, Gueddouh A 2025 J. Phys. Chem. Solids 197 112442Google Scholar

    [15]

    Rougab M, Gueddouh A 2021 Appl. Phys. A 127 969Google Scholar

    [16]

    Osetsky Y, Du M H, Samolyuk G, Zinkle S J, Zarkadoula E 2022 Phys. Rev. Mater. 6 094603Google Scholar

    [17]

    Wang Z Y, Golovynskyi S, Dong D, Zhang F H, Yue Z Y, Jin L, Wang S, Li B K, Sun Z H, Wu H L 2023 J. Lumin. 255 119605Google Scholar

    [18]

    MacKenzie J D, Abernathy C R, Pearton S J, Hommerich U, Wu X, Schwartz R N, Wilson R G, Zavada J M 1996 Appl. Phys. Lett. 69 2083Google Scholar

    [19]

    Wu X, Hommerich U, Mackenzie J D, Abernathy C R, Pearton S J, Wilson R G, Schwartz R N, Zavada J M 1997 J. Lumin. 72-74 284Google Scholar

    [20]

    Wilson R G, Schwartz R N, Abernathy C R, Pearton S J, Newman N, Rubin M, Fu T, Zavada J M 1994 Appl. Phys. Lett. 65 992Google Scholar

    [21]

    Gurumurugan K, Chen H, Harp G R, Jadwisienczak W M, Lozykowski H J 1999 Appl. Phys. Lett. 74 3008Google Scholar

    [22]

    Oliveira J C, Cavaleiro A, Vieira M T 2000 Surf. Coat. Tech. 132 99Google Scholar

    [23]

    Oliveira J C, Cavaleiro A, Vieira M T, Bigot L, Garapon C, Jacquier B, Mugnier J 2003 Opt. Mater. 24 321Google Scholar

    [24]

    Dimitrova V I, Van Patten P G, Richardson H, Kordesch M E 2001 Appl. Surf. Sci. 175-176 480Google Scholar

    [25]

    Zanatta A R, Ribeiro C T M, Jahn U 2005 J. Appl. Phys. 98 093514Google Scholar

    [26]

    Rinnert H, Hussain S S, Brien V, Legrand J, Pigeat P 2012 J. Lumin. 132 2367Google Scholar

    [27]

    Legrand J, Pigeat P, Easwarakhanthan T, Rinnert H 2014 Appl. Surf. Sci. 307 189Google Scholar

    [28]

    Hussain S S, Pigeat P 2015 Mater. Today. Proc. 2 5236Google Scholar

    [29]

    Hussain S S, Pigeat P 2015 Mater. Today. Proc. 2 5361Google Scholar

    [30]

    Kallel T, Koubaa T, Dammak M, Pandya S G, Kordesch M E, Wang J, Jadwisienczak W M, Wang Y 2016 J. Lumin. 171 42Google Scholar

    [31]

    Fang L P, Yin A Y, Zhu S F, Ding J J, Chen L, Zhang D X, Pu Z, Liu T W 2017 J. Alloys Compd. 727 735Google Scholar

    [32]

    Hu X W, Tai Z W, Yang C T 2018 Mater. Lett. 217 281Google Scholar

    [33]

    Ge S W, Zhang B Z, Yang C T 2019 Surf. Coat. Tech. 358 404Google Scholar

    [34]

    Wang Z Y, Zhang F H, Datsenko O I, Golovynskyi S, Sun Z H, Li B K, Wu H L 2023 J. Alloys Compd. 946 169350Google Scholar

    [35]

    Lei W W, Liu D, Zhu P W, Chen X H, Zhao Q, Wen G H, Cui Q L, Zou G T 2009 Appl. Phys. Lett. 95 162501Google Scholar

    [36]

    Han H C, Wang J Q, Xu C Y, Wang Q S, Zheng H L 2022 J. Alloys Compd. 907 164461Google Scholar

    [37]

    Narang V, Korakakis D, Seehra M S 2014 J. Appl. Phys. 116 213911Google Scholar

    [38]

    Zhu G, Wu W Z, Xin S Y, Zhang J, Wang Q S 2019 J. Lumin. 206 33Google Scholar

    [39]

    类伟巍 2009 博士学位论文 (长春: 吉林大学)

    Lei W W 2009 Ph. D. Dissertation (Changchun: Jilin University

    [40]

    Xu Y S, Yao B B, Cui Q L 2016 RSC Adv. 6 113204Google Scholar

    [41]

    Xiao Y, Chen J, Deng S Z, Xu N S, Yang S H 2008 J. Nanosci. Nanotechno. 8 237Google Scholar

    [42]

    Lei W W, Liu D, Zhu P W, Chen X H, Hao J, Wang Q S, Cui Q L, Zou G T 2010 Crystengcomm 12 511Google Scholar

    [43]

    Lei W W, Liu D, Zhu P W, Wang Q S, Liang G, Hao J, Chen X H, Cui Q L, Zou G T 2008 J. Phys. Chem. C 112 13353Google Scholar

    [44]

    Wang Q S, Wu W Z, Zhang J, Zhu G, Cong R D 2019 J. Alloys Compd. 775 498Google Scholar

    [45]

    Deng Y M, Yi S P, Wang Y H, Xian J Q 2014 Opt. Mater. 36 1378Google Scholar

    [46]

    Zou H, Wang X S, Hu Y F, Zhu X Q, Sui Y X, Shen D H, Song Z T 2015 J. Mater. Sci-Mater. EI 26 6502Google Scholar

    [47]

    Liang Y, Zhang X T, Qin L, Zhang E, Gao H, Zhang Z G 2006 J. Phys. Chem. B 110 21593Google Scholar

    [48]

    Kumari S, Rao A S, Sinha R K 2024 ChemPhotoChem 8 e202300226Google Scholar

    [49]

    陈宝玖, 吕少哲, 黄世华 2001 无机材料学报 16 223

    Chen B J, Lv S Z, Huang S H 2001 J. Inorg. Mater. 16 223

    [50]

    肖凯, 杨中民 2008 稀有金属材料与工程 37 80

    Xiao K, Yang Z M 2008 Rare Metal Mat. Eng. 37 80

    [51]

    Wang L X, Tuo J, Ye Y, Zhao H Q 2019 Chin. Opt. 12 112Google Scholar

    [52]

    赵延 2022 博士学位论文 (上海: 同济大学)

    Zhao Y 2022 Ph. D. Dissertation (Shanghai: Tongji University

    [53]

    Singh S K, Kumar K, Rai S B 2009 Sensor Actuat A-Phys. 149 16Google Scholar

    [54]

    Hua Y B, Yu J S 2021 ACS Sustainable Chem. Eng. 9 5105Google Scholar

    [55]

    Gutierrez-Cano V, Rodriguez F, Gonzalez J A, Valiente R 2019 J. Phys. Chem. C 123 29818Google Scholar

    [56]

    Zhou K, Zhang H Y, Liu Y J, Bu Y Y, Wang X F, Yan X H 2019 J. Am. Ceram. Soc. 102 6564Google Scholar

    [57]

    Li X M, Cao J K, Wei Y L, Yang Z R, Guo H 2015 J. Am. Ceram. Soc. 98 3824Google Scholar

    [58]

    Wang Q S, Li J H, Zhang W, Zheng H L, Cong R D 2021 J. Lumin. 236 118089Google Scholar

    [59]

    Wang Q S, Li J H, Zhang J, Zhu G, Zheng H L, Cong R D 2020 Appl. Surf. Sci. 527 146825Google Scholar

    [60]

    修向前, 李斌斌, 张荣, 陈琳, 谢自力, 韩平, 施毅, 郑有炓 2007 半导体学报 28 145

    Xiu X Q, Li B B, Zhang R, Chen L, Xie Z L, Han P, Shi Y, Zheng Y D 2007 Chin. J. Semicond. 28 145

    [61]

    Ravi S, Shashikanth F W 2020 Mater. Lett. 264 127331Google Scholar

    [62]

    Lei W W, Liu D, Ma Y M, Chen X, Tian F B, Zhu P W, Chen X H, Cui Q L, Zou G T 2010 Angew. Chem. Int. Ed. 49 173Google Scholar

    [63]

    Lei W W, Liu D, Chen X, Zhu P W, Cui Q L, Zou G T 2010 J. Phys. Chem. C 114 15574Google Scholar

  • 图 1  未掺杂AlN和AlN:Er3+松树状纳米结构的XRD图谱(插图为(100), (002), (101)峰的放大图)

    Fig. 1.  XRD patterns of undoped AlN and AlN:Er3+ pine-shaped nanostructure (the enlarged (100), (002) and (101) peaks in inset).

    图 2  AlN:Er3+松树状纳米结构的(a) XPS全图谱, 以及(b) Al 2p, (c) N 1s, (d) Er 4d的高分辨率图谱

    Fig. 2.  XPS patterns of AlN:Er3+ pine-shaped nanostructure: (a) Survey spectrum; high resolution spectra for (b) Al 2p, (c) N 1s, (d) Er 4d.

    图 3  (a)—(c) AlN:Er3+松树状纳米结构从低倍到高倍的SEM图像; (d) EDS图谱

    Fig. 3.  (a)–(c) Scanning electron microscopy images from low to high magnification of AlN:Er3+ pine-shaped nanostructure; (d) EDS spectrum.

    图 4  AlN:Er3+松树状纳米结构的(a) TEM图像、(b) HRTEM图像、(c) FFT图像和(d) EDS元素映射图像

    Fig. 4.  (a) TEM image, (b) HRTEM image, (c) FFT pattern and (d) EDS element mapping of AlN:Er3+ pine-shaped nanostructure.

    图 5  (a)未掺杂的AlN和AlN:Er3+松树状纳米结构的漫反射光谱; (b) AlN:Er3+松树状纳米结构在548 nm处的激发光谱; (c)室温下AlN:Er3+松树状纳米结构在可见光(378 nm激发)到红外光(532 nm激发)范围内的发射光谱(插图为可见光范围内的光致发光成像); (d) Er3+能级跃迁图

    Fig. 5.  (a) DRSs of undoped AlN and AlN:Er3+ pine-shaped nanostructure; (b) excitation spectrum of AlN:Er3+ pine-shaped nanostructure at 548 nm; (c) the room-temperature Vis-NIR emission spectrum of AlN:Er3+ pine-shaped nanostructure (the visible PL imaging in inset); (d) the schematic energy level diagram for Er3+ ions.

    图 6  548 nm处的PL衰减曲线

    Fig. 6.  PL decay curve at 548 nm.

    图 7  (a)不同温度下AlN:Er3+松树状纳米结构的PL光谱; (b) AlN:Er3+松树状纳米结构在293—553 K的FIR (I527 nm/I548 nm)及对其随温度变化线性拟合结果(三角形标记代表FIR的实验值, 虚线为拟合曲线); 相对灵敏度Sr随温度的变化(菱形标记代表Sr的值)

    Fig. 7.  (a) Temperature-dependence spectra of AlN:Er3+ pine-shaped nanostructure; (b) FIR values of AlN:Er3+ pine-shaped nanostructure at the temperature of 293−553 K and the linear fitted results between the FIR and the temperature (the triangular markers represent the experimental values of FIR, and the dashed line is the fitting curve); the variation of relative sensitivity (Sr) with temperature (the diamond markers represent the values of Sr).

    图 8  (a)室温下AlN:Er3+松树状纳米结构的磁滞回线; (b)单位磁化强度随温度的变化

    Fig. 8.  (a) Magnetization hysteresis loops of AlN:Er3+ pine-shaped nanostructure measured at room temperature; (b) variation of unit magnetization intensity with temperature.

    图 9  自旋极化态密度图 (a) ErAl体系; (b) ErAl + VN体系; (c) ErAl + VAl体系; 正值为自旋向上, 负值为自旋向下, 费米能级用垂直虚线来表示

    Fig. 9.  Total DOS and partial DOS of Er atom, Al atom and N atom for (a) ErAl system, (b) ErAl + VN system, (c) ErAl + VAl system. The Fermi level is indicated by the vertical dashed line.

    图 10  自旋电荷密度的空间分布 (a) ErAl体系; (b) ErAl + VN体系; (c) ErAl + VAl体系

    Fig. 10.  Spatial distribution of the spin density: (a) ErAl system; (b) ErAl + VN system; (c) ErAl + VAl system.

    表 1  基于FIR技术对Er3+掺杂不同材料的相对灵敏度(Sr)进行比较

    Table 1.  Comparison of relative sensitivity (Sr) of Er3+ doped different materials based on FIR technology.

    Er3+掺杂
    不同材料
    Sr范围/(10–2 K–1) T范围/K 文献 年份
    AlN松树状
    纳米结构
    0.53—1.9 293—553 本文 2024
    AlN薄膜 0.25—2.2 110—550 [34] 2023
    Sr9Y2W4O24 ~1.33 293—443 [48] 2024
    La2MgTiO6 ~1.12 303—483 [54] 2021
    LaGdO3 0.1—1.2 298—900 [55] 2019
    Ag@NaGdF4 ~0.42 298—573 [56] 2019
    Sr2YbF7 ~0.62 300—500 [57] 2015
    下载: 导出CSV

    表 2  VAl和ErAl + VAl体系在富Al和富N条件下的形成能

    Table 2.  Formation energy under the Al-rich and N-rich conditions of the VAl and ErAl + VAl systems.

    体系形成能/eV
    富Al富N
    VAl9.19356.1735
    ErAl + VAl10.358314.31831
    下载: 导出CSV
    Baidu
  • [1]

    李志杰, 田鸣, 贺连龙 2011 60 098101Google Scholar

    Li Z J, Tian M, He L L 2011 Acta Phys. Sin. 60 098101Google Scholar

    [2]

    蓝雷雷, 胡新宇, 顾广瑞, 姜丽娜, 吴宝嘉 2013 62 217504Google Scholar

    Lan L L, Hu X Y, Gu G R, Jiang L N, Wu B J 2013 Acta Phys. Sin. 62 217504Google Scholar

    [3]

    程赛, 吕惠民, 石振海, 崔静雅 2012 61 126201Google Scholar

    Cheng S, Lv H M, Shi Z H, Cui J Y 2012 Acta Phys. Sin. 61 126201Google Scholar

    [4]

    余森, 许晟瑞, 陶鸿昌, 王海涛, 安瑕, 杨赫, 许钪, 张进成, 郝跃 2024 73 196101Google Scholar

    Yu S, Xu S R, Tao H C, Wang H T, An X, Yang H, Xu K, Zhang J C, Hao Y 2024 Acta Phys. Sin. 73 196101Google Scholar

    [5]

    赵罡, 梁汉普, 段益峰 2023 72 096301Google Scholar

    Zhao G, Liang H P, Duan Y F 2023 Acta Phys. Sin. 72 096301Google Scholar

    [6]

    Liu H, Shao P F, Chen S L, Tao T, Yan Y, Xie Z L, Liu B, Chen D J, Lu H, Zhang R, Wang K 2024 Chin. Phys. B 33 106801Google Scholar

    [7]

    Jia W, Han P D, Chi M, Dang S H, Xu B S, Liu X G 2007 J. Appl. Phys. 101 113918Google Scholar

    [8]

    Nepal N, Nakarmi M L, Jang H U, Lin J Y, Jiang H X 2006 Appl. Phys. Lett. 89 192111Google Scholar

    [9]

    Zhao H L, Zou Z L, Yao J, Guo S W, Wang T, Shen X M, Fu Y C, He H 2021 Optik 243 167455Google Scholar

    [10]

    Li X, Wang X D, Ma H, Chen F F, Zeng X H 2019 Chin. Opt. Lett. 17 111602Google Scholar

    [11]

    Wang D, Wang X D, Ma H, Gao X D, Chen J F, Zheng S N, Mao H M, Chen H J, Zeng X H, Xu K 2022 Opt. Mater. 128 112366Google Scholar

    [12]

    Ma H, Wang X D, Chen F F, Chen J F, Zeng X H, Gao X D, Wang D, Mao H M, Xu K 2021 J. Lumin. 236 118082Google Scholar

    [13]

    Vermeersch R, Jacopin G, Robin E, Pernot J, Gayral B, Daudin B 2023 Appl. Phys. Lett. 122 091106Google Scholar

    [14]

    Elhamra F, Rougab M, Gueddouh A 2025 J. Phys. Chem. Solids 197 112442Google Scholar

    [15]

    Rougab M, Gueddouh A 2021 Appl. Phys. A 127 969Google Scholar

    [16]

    Osetsky Y, Du M H, Samolyuk G, Zinkle S J, Zarkadoula E 2022 Phys. Rev. Mater. 6 094603Google Scholar

    [17]

    Wang Z Y, Golovynskyi S, Dong D, Zhang F H, Yue Z Y, Jin L, Wang S, Li B K, Sun Z H, Wu H L 2023 J. Lumin. 255 119605Google Scholar

    [18]

    MacKenzie J D, Abernathy C R, Pearton S J, Hommerich U, Wu X, Schwartz R N, Wilson R G, Zavada J M 1996 Appl. Phys. Lett. 69 2083Google Scholar

    [19]

    Wu X, Hommerich U, Mackenzie J D, Abernathy C R, Pearton S J, Wilson R G, Schwartz R N, Zavada J M 1997 J. Lumin. 72-74 284Google Scholar

    [20]

    Wilson R G, Schwartz R N, Abernathy C R, Pearton S J, Newman N, Rubin M, Fu T, Zavada J M 1994 Appl. Phys. Lett. 65 992Google Scholar

    [21]

    Gurumurugan K, Chen H, Harp G R, Jadwisienczak W M, Lozykowski H J 1999 Appl. Phys. Lett. 74 3008Google Scholar

    [22]

    Oliveira J C, Cavaleiro A, Vieira M T 2000 Surf. Coat. Tech. 132 99Google Scholar

    [23]

    Oliveira J C, Cavaleiro A, Vieira M T, Bigot L, Garapon C, Jacquier B, Mugnier J 2003 Opt. Mater. 24 321Google Scholar

    [24]

    Dimitrova V I, Van Patten P G, Richardson H, Kordesch M E 2001 Appl. Surf. Sci. 175-176 480Google Scholar

    [25]

    Zanatta A R, Ribeiro C T M, Jahn U 2005 J. Appl. Phys. 98 093514Google Scholar

    [26]

    Rinnert H, Hussain S S, Brien V, Legrand J, Pigeat P 2012 J. Lumin. 132 2367Google Scholar

    [27]

    Legrand J, Pigeat P, Easwarakhanthan T, Rinnert H 2014 Appl. Surf. Sci. 307 189Google Scholar

    [28]

    Hussain S S, Pigeat P 2015 Mater. Today. Proc. 2 5236Google Scholar

    [29]

    Hussain S S, Pigeat P 2015 Mater. Today. Proc. 2 5361Google Scholar

    [30]

    Kallel T, Koubaa T, Dammak M, Pandya S G, Kordesch M E, Wang J, Jadwisienczak W M, Wang Y 2016 J. Lumin. 171 42Google Scholar

    [31]

    Fang L P, Yin A Y, Zhu S F, Ding J J, Chen L, Zhang D X, Pu Z, Liu T W 2017 J. Alloys Compd. 727 735Google Scholar

    [32]

    Hu X W, Tai Z W, Yang C T 2018 Mater. Lett. 217 281Google Scholar

    [33]

    Ge S W, Zhang B Z, Yang C T 2019 Surf. Coat. Tech. 358 404Google Scholar

    [34]

    Wang Z Y, Zhang F H, Datsenko O I, Golovynskyi S, Sun Z H, Li B K, Wu H L 2023 J. Alloys Compd. 946 169350Google Scholar

    [35]

    Lei W W, Liu D, Zhu P W, Chen X H, Zhao Q, Wen G H, Cui Q L, Zou G T 2009 Appl. Phys. Lett. 95 162501Google Scholar

    [36]

    Han H C, Wang J Q, Xu C Y, Wang Q S, Zheng H L 2022 J. Alloys Compd. 907 164461Google Scholar

    [37]

    Narang V, Korakakis D, Seehra M S 2014 J. Appl. Phys. 116 213911Google Scholar

    [38]

    Zhu G, Wu W Z, Xin S Y, Zhang J, Wang Q S 2019 J. Lumin. 206 33Google Scholar

    [39]

    类伟巍 2009 博士学位论文 (长春: 吉林大学)

    Lei W W 2009 Ph. D. Dissertation (Changchun: Jilin University

    [40]

    Xu Y S, Yao B B, Cui Q L 2016 RSC Adv. 6 113204Google Scholar

    [41]

    Xiao Y, Chen J, Deng S Z, Xu N S, Yang S H 2008 J. Nanosci. Nanotechno. 8 237Google Scholar

    [42]

    Lei W W, Liu D, Zhu P W, Chen X H, Hao J, Wang Q S, Cui Q L, Zou G T 2010 Crystengcomm 12 511Google Scholar

    [43]

    Lei W W, Liu D, Zhu P W, Wang Q S, Liang G, Hao J, Chen X H, Cui Q L, Zou G T 2008 J. Phys. Chem. C 112 13353Google Scholar

    [44]

    Wang Q S, Wu W Z, Zhang J, Zhu G, Cong R D 2019 J. Alloys Compd. 775 498Google Scholar

    [45]

    Deng Y M, Yi S P, Wang Y H, Xian J Q 2014 Opt. Mater. 36 1378Google Scholar

    [46]

    Zou H, Wang X S, Hu Y F, Zhu X Q, Sui Y X, Shen D H, Song Z T 2015 J. Mater. Sci-Mater. EI 26 6502Google Scholar

    [47]

    Liang Y, Zhang X T, Qin L, Zhang E, Gao H, Zhang Z G 2006 J. Phys. Chem. B 110 21593Google Scholar

    [48]

    Kumari S, Rao A S, Sinha R K 2024 ChemPhotoChem 8 e202300226Google Scholar

    [49]

    陈宝玖, 吕少哲, 黄世华 2001 无机材料学报 16 223

    Chen B J, Lv S Z, Huang S H 2001 J. Inorg. Mater. 16 223

    [50]

    肖凯, 杨中民 2008 稀有金属材料与工程 37 80

    Xiao K, Yang Z M 2008 Rare Metal Mat. Eng. 37 80

    [51]

    Wang L X, Tuo J, Ye Y, Zhao H Q 2019 Chin. Opt. 12 112Google Scholar

    [52]

    赵延 2022 博士学位论文 (上海: 同济大学)

    Zhao Y 2022 Ph. D. Dissertation (Shanghai: Tongji University

    [53]

    Singh S K, Kumar K, Rai S B 2009 Sensor Actuat A-Phys. 149 16Google Scholar

    [54]

    Hua Y B, Yu J S 2021 ACS Sustainable Chem. Eng. 9 5105Google Scholar

    [55]

    Gutierrez-Cano V, Rodriguez F, Gonzalez J A, Valiente R 2019 J. Phys. Chem. C 123 29818Google Scholar

    [56]

    Zhou K, Zhang H Y, Liu Y J, Bu Y Y, Wang X F, Yan X H 2019 J. Am. Ceram. Soc. 102 6564Google Scholar

    [57]

    Li X M, Cao J K, Wei Y L, Yang Z R, Guo H 2015 J. Am. Ceram. Soc. 98 3824Google Scholar

    [58]

    Wang Q S, Li J H, Zhang W, Zheng H L, Cong R D 2021 J. Lumin. 236 118089Google Scholar

    [59]

    Wang Q S, Li J H, Zhang J, Zhu G, Zheng H L, Cong R D 2020 Appl. Surf. Sci. 527 146825Google Scholar

    [60]

    修向前, 李斌斌, 张荣, 陈琳, 谢自力, 韩平, 施毅, 郑有炓 2007 半导体学报 28 145

    Xiu X Q, Li B B, Zhang R, Chen L, Xie Z L, Han P, Shi Y, Zheng Y D 2007 Chin. J. Semicond. 28 145

    [61]

    Ravi S, Shashikanth F W 2020 Mater. Lett. 264 127331Google Scholar

    [62]

    Lei W W, Liu D, Ma Y M, Chen X, Tian F B, Zhu P W, Chen X H, Cui Q L, Zou G T 2010 Angew. Chem. Int. Ed. 49 173Google Scholar

    [63]

    Lei W W, Liu D, Chen X, Zhu P W, Cui Q L, Zou G T 2010 J. Phys. Chem. C 114 15574Google Scholar

  • [1] 张浩杰, 张茹菲, 傅立承, 顾轶伦, 智国翔, 董金瓯, 赵雪芹, 宁凡龙. 一种具有“1111”型结构的新型稀磁半导体(La1–xSrx)(Zn1–xMnx)SbO.  , 2021, 70(10): 107501. doi: 10.7498/aps.70.20201966
    [2] 樊济宇, 冯瑜, 陆地, 张卫纯, 胡大治, 杨玉娥, 汤如俊, 洪波, 凌浪生, 王彩霞, 马春兰, 朱岩. N型稀磁半导体Ge0.96–xBixFe0.04Te薄膜的磁电性质研究.  , 2019, 68(10): 107501. doi: 10.7498/aps.68.20190019
    [3] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究.  , 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [4] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长.  , 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [5] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究.  , 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [6] 孙运斌, 张向群, 李国科, 杨海涛, 成昭华. 氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响.  , 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [7] 王世伟, 朱明原, 钟民, 刘聪, 李瑛, 胡业旻, 金红明. 脉冲磁场对水热法制备Mn掺杂ZnO稀磁半导体的影响.  , 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [8] 朱明原, 刘聪, 薄伟强, 舒佳武, 胡业旻, 金红明, 王世伟, 李瑛. 脉冲磁场下水热法制备Cr掺杂ZnO稀磁半导体晶体.  , 2012, 61(7): 078106. doi: 10.7498/aps.61.078106
    [9] 程赛, 吕惠民, 石振海, 崔静雅. 碳泡沫衬底上氮化铝纳米线的生长及其光致发光特性研究.  , 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [10] 陈静, 金国钧, 马余强. 氧空位对钴掺杂氧化锌半导体磁性能的影响.  , 2009, 58(4): 2707-2712. doi: 10.7498/aps.58.2707
    [11] 杨威, 姬扬, 罗海辉, 阮学忠, 王玮竹, 赵建华. Curie温度附近稀磁半导体(Ga,Mn)As的电学噪声谱性质.  , 2009, 58(12): 8560-8565. doi: 10.7498/aps.58.8560
    [12] 路忠林, 邹文琴, 徐明祥, 张凤鸣. 单晶和孪晶的Zn0.96Co0.04O稀磁半导体薄膜的制备与研究.  , 2009, 58(12): 8467-8472. doi: 10.7498/aps.58.8467
    [13] 王叶安, 秦福文, 吴东江, 吴爱民, 徐 茵, 顾 彪. 基于电子回旋共振-等离子体增强金属有机物化学气相沉积技术生长GaMnN稀磁半导体的研究.  , 2008, 57(1): 508-513. doi: 10.7498/aps.57.508
    [14] 廖国进, 闫绍峰, 巴德纯. 铈掺杂氧化铝薄膜的蓝紫色发光特性.  , 2008, 57(11): 7327-7332. doi: 10.7498/aps.57.7327
    [15] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究.  , 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [16] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光.  , 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [17] 韦志仁, 李 军, 刘 超, 林 琳, 郑一博, 葛世艳, 张华伟, 董国义, 窦军红. Cu对Zn1-xFexO稀磁半导体磁性的影响.  , 2006, 55(10): 5521-5524. doi: 10.7498/aps.55.5521
    [18] 林秋宝, 李仁全, 曾永志, 朱梓忠. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算.  , 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
    [19] 王 漪, 孙 雷, 韩德栋, 刘力锋, 康晋锋, 刘晓彦, 张 兴, 韩汝琦. ZnCoO稀磁半导体的室温磁性.  , 2006, 55(12): 6651-6655. doi: 10.7498/aps.55.6651
    [20] 曾永志, 黄美纯. TM掺杂Ⅱ-Ⅳ-Ⅴ2黄铜矿半导体的电磁性质.  , 2005, 54(4): 1749-1755. doi: 10.7498/aps.54.1749
计量
  • 文章访问数:  602
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 修回日期:  2025-01-09
  • 上网日期:  2025-01-24
  • 刊出日期:  2025-03-20

/

返回文章
返回
Baidu
map