搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同轴枪放电等离子体动力学与杂质谱特性

漆亮文 杜满强 温晓东 宋健 闫慧杰

引用本文:
Citation:

同轴枪放电等离子体动力学与杂质谱特性

漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰

Dynamics and impurity spectral characteristics of coaxial gun discharge plasma

Qi Liang-Wen, Du Man-Qiang, Wen Xiao-Dong, Song Jian, Yan Hui-Jie
cstr: 32037.14.aps.73.20240760
PDF
HTML
导出引用
  • 同轴枪放电可以产生高速度、高密度及高能量密度的等离子体射流, 在等离子体空间推进、天体物理和高温核聚变等研究领域具有广泛的应用. 基于同轴枪的实际应用, 等离子体速度、密度、纯净度是评估等离子体特性的重要参量. 本文通过对等离子体光电流信号和发射光谱的测量及放电图像的拍摄, 研究了不同放电电流和气压对同轴枪放电等离子体的动力学特性、电子密度与杂质发射光谱的影响. 实验结果表明: 气压为10 Pa, 放电电流为30—70 kA时, 等离子体在枪内的加速时间随电流的增大而缩短, 等离子体中阳极和阴极杂质光谱均随电流的增大而增强; 放电电流为40 kA, 气压为10—70 Pa时, 等离子体加速时间随气压的增大而增长, 等离子体中阴极杂质光谱强度随气压的增加不断降低, 而阳极杂质光谱强度却是逐渐增加的, 不过其增长速率逐渐减小. 分析认为, 不同放电电流和气压决定了等离子体获能、加速特性及电子密度, 协同影响金属杂质特性. 同轴枪喷口处发生等离子体箍缩效应与高密度电弧在枪内加速时间是影响阳极烧蚀的重要因素, 阴极材料的杂质是离子轰击溅射产生的, 主要依赖于离子携带的能量.
    The coaxial gun discharge can produce plasma jet with high velocity, high density and high energy density, and has extensive applications, such as in plasma space propulsion, simulation of the interaction between edge local mode and wall materials in ITER, fuel injection in magnetic confinement fusion devices, and laboratory astrophysics. In the pre-filled discharge mode or snowplow mode, the plasma current sheet is formed near the insulating layer surface and moves toward the end of the coaxial gun under Lorentz force. Plasma velocity, density and purity characteristics are very important research contents for the actual applications of coaxial gun. Emission spectrometry as a non-interference method can be used to diagnose a variety of plasma physical properties.In this experiment, the effects of different discharge currents and gas pressures on the plasma dynamics, electron density and impurity emission spectra of coaxial gun discharge plasma are studied through the measurement of plasma photocurrent, emission spectra and the shooting of discharge images. The experimental results show that the acceleration time of the plasma in the gun decreases with current increasing in a range of 30–70 kA when the gas pressure is 10 Pa, the spectral intensity of anode and cathode impurities in plasma increase with current amplitude increasing. When the discharge current is 40 kA and the gas pressure is in a range of 10–70 Pa, the acceleration time of plasma increases with gas pressure rising, and the spectral intensity of the cathode impurity in the plasma decreases with the pressure increasing, while the spectral intensity of the anode impurity increases gradually, but its growth rate decreases continuously. The analysis indicates that the presence of metallic impurities originating from the electrode material limits the jet velocity of the plasma and is the main cause of the deviation from theoretical value. The plasma pinch effect at the nozzle of coaxial gun and the acceleration time of high-density arc in the gun are important factors affecting anode ablation. The impurity of cathode material is produced by ion bombardment sputtering, which mainly depends on the energy carried by ions. Therefore, a reasonable choice for discharge parameters is the key factor to obtain optimal plasma characteristics during the discharge of the coaxial gun.
      通信作者: 漆亮文, 18742509171@163.com
    • 基金项目: 第四批天佑青年托举人才支持计划(批准号: 1520260419)资助的课题.
      Corresponding author: Qi Liang-Wen, 18742509171@163.com
    • Funds: Project supported by the Fourth Batch of Tianyou Youth Talent Lift Program of Lanzhou Jiaotong University, China (Grant No. 1520260419).
    [1]

    Hammer J H, Hartman C W, Eddleman J L, McLean H S 1988 Phys. Rev. Lett. 61 2843Google Scholar

    [2]

    Hammer J H, Eddleman J L, Hartman C W, McLean H S, Molvik A W 1991 Phys. Fluids B 3 2236Google Scholar

    [3]

    Skvortsov Y V 1992 Phys. Fluids B 4 750Google Scholar

    [4]

    Black D C, Mayo R M, Gerwin R A, Schoenberg K F, Scheuer J T, Hoyt R P, Henins I 1994 Phys. Plasmas 1 3115Google Scholar

    [5]

    Sadowski M J, Scholz M 2008 Plasma Sources Sci. Technol. 17 024001Google Scholar

    [6]

    Baker K L, Hwang D Q, Evans R W, Horton R D, McLean H S, Terry S D, Howard S, DiCaprio C J 2002 Nucl. Fusion 42 94Google Scholar

    [7]

    Tereshin V I, Bandura A N, Byrka O V, Chebotarev V V, Garkusha I E, Landman I, Makhlaj V A, Neklyudov I M, Solyakov D G, Tsarenko A V 2007 Plasma Phys. Controlled Fusion 49 A231Google Scholar

    [8]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [9]

    Hsu S C, Moser A L, Merritt E C, Adams C S, Dunn J P, Brockington S, Case A, Gilmore M, Lynn A G, Messer S J, Witherspoon F D 2014 J. Plasma Phys. 81 345810201Google Scholar

    [10]

    Wiechula J, Schoenlein A, Iberler M, Hock C, Manegold T, Bohlender B, Jacoby J 2016 AIP Adv. 6 075313Google Scholar

    [11]

    Zhang Y, Fisher D M, Gilmore M, Hsu S C, Lynn A G 2018 Phys. Plasmas 25 055709Google Scholar

    [12]

    Woodall D M, Len L K 1985 J. Appl. Phys. 57 961Google Scholar

    [13]

    漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 63 035203Google Scholar

    Qi L W, Zhao C X, Yan H J, Wan T T, Ren C S 2019 Acta Phys. Sin. 63 035203Google Scholar

    [14]

    Poehlmann F R 2010 Ph. D. Dissertation (Stamford: Stanford University

    [15]

    赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 68 105203Google Scholar

    Zhao C X, Qi L W, Yan H J, Wan T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar

    [16]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232Google Scholar

    [17]

    Parks P B 1988 Phys. Rev. Lett. 61 1364Google Scholar

    [18]

    Rabiński M, Zdunek K 2003 Vacuum 70 303Google Scholar

    [19]

    Rabiński M, Zdunek K 2007 Surf. Coat. Technol. 201 5438Google Scholar

    [20]

    杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 66 055203Google Scholar

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar

    [21]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [22]

    Wang Z, Beinke P D, Barnes C W, Michael W M, Mignardot E, Wurden G A, Hsu S C, Intrator T P, Munson C P 2005 Rev. Sci. Instrum. 76 033501Google Scholar

    [23]

    Brown M R, Bailey Iii A D, Bellan P M 1991 J. Appl. Phys. 69 6302Google Scholar

    [24]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 1 21Google Scholar

    [25]

    Wiechula J, Hock C, Iberler M, Manegold T, Schönlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar

    [26]

    Qian M Y, Ren C S, Wang D Z, Zhang J L, Wei G D 2010 J. Appl. Phys. 107 063303Google Scholar

    [27]

    Ashkenazy J, Kipper R, Caner M 1991 Phys. Rev. A 43 5568Google Scholar

    [28]

    Zhao C X, Song J, Qi L W, Ma C Y, Hu J J, Bai X D, Wang D Z 2020 Fusion Eng. Des. 158 111870Google Scholar

    [29]

    Liu S, Huang Y Z, Zhang Y P, Zhan W, Yu M H, Yang L J 2018 Phys. Plasmas 25 113505Google Scholar

    [30]

    宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真 2021 70 105201Google Scholar

    Song J, Lee J W, Bai X D, Zhang J S, Yan H J, Xiao Q M, Wang D Z 2021 Acta Phys. Sin. 70 105201Google Scholar

    [31]

    Chau S W, Hsu K L, Lin D L, Tzeng C C 2007 J. Phys. D: Appl. Phys. 40 1944Google Scholar

  • 图 1  实验装置与诊断原理图

    Fig. 1.  Schematic of experimental setup and diagnosis principle.

    图 2  在气压为10 Pa, 不同放电电压下同轴枪的电流、光电流波形图 (a) 3 kV; (b) 4 kV; (c) 6 kV; (d) 7 kV

    Fig. 2.  Waveforms of current and photodiode signals for coaxial gun discharge at the pressure 10 Pa with different voltages: (a) 3 kV; (b) 4 kV; (c) 6 kV; (d) 7 kV.

    图 3  气压为10 Pa, 不同放电电流下等离子体理论速度与实验速度对比

    Fig. 3.  Theoretical and experimental velocities of the plasma versus discharge current at a pressure of 10 Pa.

    图 4  在充电电压4 kV, 不同气压下同轴枪的电流、光电流波形图 (a) 10 Pa; (b) 30 Pa; (c) 50 Pa; (d) 70 Pa

    Fig. 4.  Waveforms of current and photodiode signals for coaxial gun discharge with the applied voltage of 4 kV at different pressure: (a) 10 Pa; (b) 30 Pa; (c) 50 Pa; (d) 70 Pa.

    图 5  电流为40 kA, 不同气压下等离子体理论速度与实验速度对比

    Fig. 5.  Theoretical and experimental velocities of the plasma versus pressure at the discharge current of 40 kA.

    图 6  在充电电压4 kV, 不同气压下同轴枪的放电照片 (a) 10 Pa; (b) 30 Pa; (c) 50 Pa; (d) 70 Pa

    Fig. 6.  Photographs for coaxial gun discharge with the applied voltage of 4 kV at different pressures: (a) 10 Pa; (b) 30 Pa; (c) 50 Pa; (d) 70 Pa.

    图 7  在充电电压4 kV, 氩气气压10 Pa放电条件下测得的同轴枪(a)发射光谱和(b) Hβ谱线拟合

    Fig. 7.  (a) Emission spectrum and (b) fitting of Hβ spectrum measured for coaxial gun discharge in argon with the applied voltage of 4 kV and pressure of 10 Pa.

    图 8  气压为10 Pa, 等离子体电子密度随放电电流的变化

    Fig. 8.  Electron density versus discharge current at a pressure of 10 Pa.

    图 9  放电电流40 kA, 等离子体电子密度随气压的变化

    Fig. 9.  Electron density versus pressure at the discharge current of 40 kA.

    图 10  (a) 加速和(b) 喷射阶段等离子体动力学特征示意图

    Fig. 10.  Schematic diagram of plasma dynamics during (a) acceleration and (b) ejection stages.

    图 11  氩气条件下, 同轴枪放电等离子体中Ti I 453.32 nm, Cu I 521.82 nm 和 Cu II 589 nm的光谱谱线

    Fig. 11.  Spectra of Ti I 453.32 nm, Cu I 521.82 nm and Cu II 589 nm for coaxial gun discharge in argon.

    图 12  气压为10 Pa条件下, 等离子体中杂质光谱强度随放电电流的变化

    Fig. 12.  Spectral intensity of impurities in plasma versus discharge current under the condition with pressure of 10 Pa.

    图 13  放电电流为40 kA条件下, 等离子体中杂质光谱强度随工作气压的变化

    Fig. 13.  Spectral intensity of impurities in plasma versus working pressure at discharge current of 40 kA.

    Baidu
  • [1]

    Hammer J H, Hartman C W, Eddleman J L, McLean H S 1988 Phys. Rev. Lett. 61 2843Google Scholar

    [2]

    Hammer J H, Eddleman J L, Hartman C W, McLean H S, Molvik A W 1991 Phys. Fluids B 3 2236Google Scholar

    [3]

    Skvortsov Y V 1992 Phys. Fluids B 4 750Google Scholar

    [4]

    Black D C, Mayo R M, Gerwin R A, Schoenberg K F, Scheuer J T, Hoyt R P, Henins I 1994 Phys. Plasmas 1 3115Google Scholar

    [5]

    Sadowski M J, Scholz M 2008 Plasma Sources Sci. Technol. 17 024001Google Scholar

    [6]

    Baker K L, Hwang D Q, Evans R W, Horton R D, McLean H S, Terry S D, Howard S, DiCaprio C J 2002 Nucl. Fusion 42 94Google Scholar

    [7]

    Tereshin V I, Bandura A N, Byrka O V, Chebotarev V V, Garkusha I E, Landman I, Makhlaj V A, Neklyudov I M, Solyakov D G, Tsarenko A V 2007 Plasma Phys. Controlled Fusion 49 A231Google Scholar

    [8]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [9]

    Hsu S C, Moser A L, Merritt E C, Adams C S, Dunn J P, Brockington S, Case A, Gilmore M, Lynn A G, Messer S J, Witherspoon F D 2014 J. Plasma Phys. 81 345810201Google Scholar

    [10]

    Wiechula J, Schoenlein A, Iberler M, Hock C, Manegold T, Bohlender B, Jacoby J 2016 AIP Adv. 6 075313Google Scholar

    [11]

    Zhang Y, Fisher D M, Gilmore M, Hsu S C, Lynn A G 2018 Phys. Plasmas 25 055709Google Scholar

    [12]

    Woodall D M, Len L K 1985 J. Appl. Phys. 57 961Google Scholar

    [13]

    漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 63 035203Google Scholar

    Qi L W, Zhao C X, Yan H J, Wan T T, Ren C S 2019 Acta Phys. Sin. 63 035203Google Scholar

    [14]

    Poehlmann F R 2010 Ph. D. Dissertation (Stamford: Stanford University

    [15]

    赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 68 105203Google Scholar

    Zhao C X, Qi L W, Yan H J, Wan T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar

    [16]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232Google Scholar

    [17]

    Parks P B 1988 Phys. Rev. Lett. 61 1364Google Scholar

    [18]

    Rabiński M, Zdunek K 2003 Vacuum 70 303Google Scholar

    [19]

    Rabiński M, Zdunek K 2007 Surf. Coat. Technol. 201 5438Google Scholar

    [20]

    杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 66 055203Google Scholar

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar

    [21]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [22]

    Wang Z, Beinke P D, Barnes C W, Michael W M, Mignardot E, Wurden G A, Hsu S C, Intrator T P, Munson C P 2005 Rev. Sci. Instrum. 76 033501Google Scholar

    [23]

    Brown M R, Bailey Iii A D, Bellan P M 1991 J. Appl. Phys. 69 6302Google Scholar

    [24]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 1 21Google Scholar

    [25]

    Wiechula J, Hock C, Iberler M, Manegold T, Schönlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar

    [26]

    Qian M Y, Ren C S, Wang D Z, Zhang J L, Wei G D 2010 J. Appl. Phys. 107 063303Google Scholar

    [27]

    Ashkenazy J, Kipper R, Caner M 1991 Phys. Rev. A 43 5568Google Scholar

    [28]

    Zhao C X, Song J, Qi L W, Ma C Y, Hu J J, Bai X D, Wang D Z 2020 Fusion Eng. Des. 158 111870Google Scholar

    [29]

    Liu S, Huang Y Z, Zhang Y P, Zhan W, Yu M H, Yang L J 2018 Phys. Plasmas 25 113505Google Scholar

    [30]

    宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真 2021 70 105201Google Scholar

    Song J, Lee J W, Bai X D, Zhang J S, Yan H J, Xiao Q M, Wang D Z 2021 Acta Phys. Sin. 70 105201Google Scholar

    [31]

    Chau S W, Hsu K L, Lin D L, Tzeng C C 2007 J. Phys. D: Appl. Phys. 40 1944Google Scholar

  • [1] 张津硕, 孙辉, 杜志杰, 张雪航, 肖青梅, 范金蕤, 闫慧杰, 宋健. 预填充模式下同轴枪放电等离子体加速模型分析与优化.  , 2023, 72(15): 155202. doi: 10.7498/aps.72.20230463
    [2] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照. 微波谐振腔低气压放电等离子体反应动力学过程.  , 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [3] 赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响.  , 2021, 70(20): 205202. doi: 10.7498/aps.70.20210709
    [4] 宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真. 外电极长度对同轴枪放电等离子体特性的影响.  , 2021, 70(10): 105201. doi: 10.7498/aps.70.20201724
    [5] 余鑫, 漆亮文, 赵崇霄, 任春生. 同轴枪正、负脉冲放电等离子体特性的对比.  , 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [6] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响.  , 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [7] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响.  , 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [8] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生. 同轴枪放电等离子体电流片的运动特性研究.  , 2019, 68(3): 035203. doi: 10.7498/aps.68.20181832
    [9] 杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生. 同轴枪脉冲放电等离子体输运过程中密度变化的实验研究.  , 2017, 66(5): 055203. doi: 10.7498/aps.66.055203
    [10] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生. 放电参数对同轴枪中等离子体团的分离的影响.  , 2015, 64(7): 075201. doi: 10.7498/aps.64.075201
    [11] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究.  , 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [12] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断.  , 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [13] 刘月华, 陈明, 刘向东, 崔清强, 赵明文. 透镜到靶材的距离对脉冲激光诱导等离子体的影响机理研究.  , 2013, 62(2): 025203. doi: 10.7498/aps.62.025203
    [14] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究.  , 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [15] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究.  , 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [16] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究.  , 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [17] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究.  , 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [18] 唐京武, 黄笃之, 易有根. Au激光等离子体X射线发射光谱的理论研究.  , 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [19] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术.  , 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [20] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究.  , 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
计量
  • 文章访问数:  486
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-28
  • 修回日期:  2024-08-01
  • 上网日期:  2024-08-23
  • 刊出日期:  2024-09-20

/

返回文章
返回
Baidu
map