搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强吸收纳米粒子团簇的光泳力悬浮及热泳力下的迁移行为

黄雪峰 刘敏 卢山 张敏琦 李盛姬 罗丹

引用本文:
Citation:

强吸收纳米粒子团簇的光泳力悬浮及热泳力下的迁移行为

黄雪峰, 刘敏, 卢山, 张敏琦, 李盛姬, 罗丹

Levitation of air-borne strong-absorbing nanoparticle clusters dominated by photophorestic force and migration behavior under thermophorestic force

Huang Xue-Feng, Liu Min, Lu Shan, Zhang Min-Qi, Li Sheng-Ji, Luo Dan
PDF
HTML
导出引用
  • 为了探索空气中强吸收纳米粒子团簇在激光作用下的悬浮以及迁移行为, 提出采用反向传输的双贝塞尔光束对纳米粒子团簇进行捕获及悬浮, 而后释放团簇, 观察和计算分析团簇的迁移行为. 两束贝塞尔光束由锥透镜和偏振分光方式产生, 进行反向水平布置, 形成三维光阱, 光阱刚度可通过调节两束贝塞尔光束的功率比进行控制. 悬浮室内的粒子通过微弱气流进行流化, 而后被光阱捕获和悬浮. 采用高速摄像仪对团簇的悬浮及迁移过程进行记录, 然后通过图像分析来获取粒子运动参数. 以强吸收性超细煤粉粒子团簇为对象, 首先对其进行悬浮和释放迁移的实验研究, 而后对团簇所受的光泳力、重力、浮力、曳力以及热泳力进行计算和分析. 实验和计算的结果表明: 强吸收性纳米粒子团簇在激光作用下产生的光泳力占主导作用; 团簇能够被稳定地悬浮在反向传输的双贝塞尔光束形成的三维势阱中, 通过调整悬浮的位置而达到与重力、浮力、曳力等的动态平衡; 利用悬浮的相对不稳定度分析评价强吸收性粒子团簇的稳定性, 超细煤粉粒子团簇的最小相对不稳定度可达0.075; 通过对团簇释放后的高速图像进行分析, 可获得团簇的迁移运动参数, 从而测量出团簇所受的热泳力; 对于等效粒径为13—21 μm的超细煤粉粒子团簇, 其热泳力量级为10–11—10–10 N, 随着团簇粒径的增大, 热泳力线性增大, 与理论计算结果趋势一致. 通过利用激光对粒子进行悬浮和释放的方式为热泳力的测量和研究提供了一种新的研究思路, 也为气体介质中粒子的控制和输运展现了一种新的操控手段.
    In order to explore the levitation and migration behavior of strongly absorbing nanoparticle clusters in air by using laser technique, in this study trapping and levitating nanoparticle clusters is proposed based on the counter-propagated bi-Bessel beams, and then the clusters are released to observe and analyze their migration behaviors. Two Bessel beams are generated by a conical lens and polarizing beam splitter, arranged horizontally in reverse to form a three-dimensional optical trap. The stiffness of the optical trap can be controlled by adjusting the power ratio of the two Bessel beams. The particles in the levitation chamber are fluidized through weak airflow, and then captured and levitated by a light trap. A high-speed camera is used to record the levitation and migration process of clusters. The particle motion parameters can be obtained through image analysis. The strong-absorbing ultrafine coal particle clusters are first selected to conduct the experiments on their levitation and release migration. Then, the photophorestic force, gravity, buoyancy, drag force, and thermophorestic force acting on the clusters are calculated and analyzed. The experimental and computational results indicate that the photophorestic force of air-borne strong-absorbing nanoparticle clusters generated by laser illumination dominates the levitation; nanoparticle clusters can be stably levitated in a three-dimensional potential well formed by counter-propagated bi-Bessel beams, achieving dynamic equilibrium with gravity, buoyancy, drag, etc. by adjusting the levitation position. The relative instability parameter of levitation is used to evaluate the stability of air-borne strong-absorbing nanoparticle clusters, and the minimum relative instability of ultrafine coal particle clusters reaches 0.075. By analyzing the images of nanoparticle cluster recorded by high-speed camera after being released, the migration motion parameters of the cluster can be obtained, therefore the thermophorestic force acting on the cluster is accurately measured. For the ultrafine coal particle clusters with equivalent particle sizes in a range of approximately 13–21 μm, the magnitudes of their thermophorestic forces are in a range of 10–11–10–10 N. As the cluster size increases, the thermophorestic force increases linearly, which is consistent with the theoretical calculation trend. The use of laser to levitate and release particles provides a novel approach for measuring and analyzing thermophorestic force, and also presents a novel manipulation tool for controlling and transporting particles in a gaseous medium.
      通信作者: 李盛姬, shengjili@hdu.edu.cn
    • 基金项目: 浙江省自然科学基金(批准号: LY24E060006)和国家重大科研仪器研制项目(批准号: 52027809)资助的课题.
      Corresponding author: Li Sheng-Ji, shengjili@hdu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY24E060006) and the National Major Scientific Instruments and Equipments Development Project of National Natural Science Foundation of China (Grant No. 52027809).
    [1]

    Ashkin A, Dziedzic J 1975 Science 187 1073Google Scholar

    [2]

    黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣 2014 63 178802Google Scholar

    Huang X F, Li S J, Zhou D H, Zhao G J, Wang G Q, Xu J R 2014 Acta Phys. Sin. 63 178802Google Scholar

    [3]

    Huisken J, Stelzer E H K 2002 Opt. Lett. 27 1223Google Scholar

    [4]

    Meresman H, Wills J B, Summers M, McGloin D, Reid J P 2009 Phys. Chem. Chem. Phys. 11 11333Google Scholar

    [5]

    Zhang Z, Cannan D, Liu J J, Zhang P, Christodoulides D N, Chen Z G 2012 Opt. Express 20 16212Google Scholar

    [6]

    Pan Y L, Hill S C, Coleman M 2012 Opt. Express 20 5325Google Scholar

    [7]

    Rings D, Schachoff R, Selmke M, Cichos F, Kroy K 2010 Phys. Rev. Lett. 105 090604Google Scholar

    [8]

    Gong Z Y, Pan Y L, Wang C J 2016 Rev. Sci. Instrum. 87 156Google Scholar

    [9]

    Keh H J, Tu H J 2001 Colloids Surfaces A 176 213Google Scholar

    [10]

    Malaia N V, Shchukin E R 2019 Tech. Phys. 64 458Google Scholar

    [11]

    Chang Y C, Keh H J 2012 Journal of Aerosol Science 50 1Google Scholar

    [12]

    Maxwell J C 1879 Phil. Trans. R. Soc. 170 231Google Scholar

    [13]

    Kennard E H 1938 Kinetic Theory of Gases (New York: McGraw-Hill) p291

    [14]

    Cui J, Su J J, Wang J, Xia G D, Li Z G 2021 Acta Phys. Sin. 70 055101 [崔杰, 苏俊杰, 王军, 夏国栋, 李志刚 2021 70 055101]Google Scholar

    Cui J, Su J J, Wang J, Xia G D, Li Z G 2021 Acta Phys. Sin. 70 055101Google Scholar

    [15]

    Greene W M, Spjut R E, Bar-Ziv E, Sarofim A F, Longwell J P 1985 J. Opt. Soc. Am. B 2 998Google Scholar

    [16]

    Chernyah V, Beresnev S 1993 J. Aerosol Sci. 24 857Google Scholar

    [17]

    Mackowski D W 1989 Int. J. Heat Mass Transf. 32 843Google Scholar

    [18]

    Frueh J, Rutkowski S, Si T, Ren Y X, Gai M, Tverdokhlebov S I, Qiu G, Schmitt J, He Q, Wang J 2021 Appl. Surf. Sci. 549 149319Google Scholar

    [19]

    Burelbach J, Zupkauskas M, Lamboll R, Lan Y, Eiser E 2017 J. Chem. Phys. 147 094906Google Scholar

    [20]

    Li L, Loyalka S K, Tamadate T, Sapkota D, Ouyang H, Hogan Jr C J 2024 J. Aerosol Sci. 178 106337Google Scholar

    [21]

    Li W, Davis E J 1995 J. Aerosol Sci. 26 1063Google Scholar

    [22]

    Zheng F, Davis E J 2001 Aerosol Sci. 32 1421Google Scholar

    [23]

    Bosworth R W, Ventura A L, Ketsdever A D, Gimelshein S F 2016 J. Fluid Mech. 805 207Google Scholar

    [24]

    黄雪峰, 陈矗, 李嘉欣, 张敏琦, 李盛姬 2023 72 174201Google Scholar

    Huang X F, Chen C, Li J X, Zhang M Q, Li S J 2023 Acta Phys. Sin. 72 174201Google Scholar

    [25]

    Dusel P W, Kerker M, Cooke D D 1979 J. Opt. Sot. Am. 69 55Google Scholar

    [26]

    Pluchino A B 1983 Appl. Opt. 22 103Google Scholar

    [27]

    Yalamov Y I, Kutukov V B, Shchukin E R 1976 J. Colioid Interface Sci. 57 564Google Scholar

    [28]

    McPeak K M, Jayanti S V, Kress S J, Meyer S, Iotti S, Rossinelli A, Norris D J 2015 ACS Photonics 2 326Google Scholar

    [29]

    Wang H Y, Wang J J, Dong W Q, Han Y P, Ambrosio L A, Liu L 2021 Opt. Express 29 26894Google Scholar

    [30]

    Epstein P S 1929 Z. Phys. 54 537Google Scholar

  • 图 1  (a) 超细煤粉颗粒的扫描电子显微镜图片; (b) 超细煤粉团簇的图片

    Fig. 1.  (a) Scanning electron microscope picture of a super fine pulverized coal particle; (b) picture of pulverized coal cluster.

    图 2  实验装置示意图

    Fig. 2.  Schematic of experimental setup.

    图 3  迁移过程中团簇受力分析示意图

    Fig. 3.  Schematic of force analysis on a cluster during migration.

    图 4  (a) 被稳定悬浮的团簇照片; (b) 不同时刻的悬浮团簇图像; (c) 悬浮团簇的等效粒径及波动位移

    Fig. 4.  (a) Photo of a stably suspended coal cluster; (b) images of the suspended cluster at different moments; (c) equivalent particle size and fluctuating displacement of the suspended cluster.

    图 5  (a) 团簇迁移运动过程图像; (b) 位移矢量图; (c) 热泳力矢量图; (d) 热泳力、曳力和有效重力的变化情况对比

    Fig. 5.  (a) Images during cluster migration movement; (b) displacement vector diagram; (c) thermophorestic force vector diagram; (d) comparison of the thermophorestic force, drag force, and effective gravity.

    图 6  不同粒径团簇的位移矢量图与相应的热泳力、曳力和有效重力的变化情况 (a), (b)团簇1; (c), (d) 团簇2; (e), (f) 团簇3; (g), (h) 团簇4; (i), (j) 团簇5; (k), (l) 团簇6

    Fig. 6.  Comparison of displacement vector and the corresponding thermophorestic force, drag force, and effective gravity: (a), (b) Cluster 1; (c), (d) cluster 2; (e), (f) cluster 3; (g), (h) cluster 4; (i), (j) cluster 5; (k), (l) cluster 6.

    图 7  热泳力随强吸收性团簇半径的变化

    Fig. 7.  Variation of thermophorestic force with the radius of strong-absorbing clusters.

    图 8  不对称因子随粒径参数(a)和贝塞尔光束半锥角(b)的变化

    Fig. 8.  Variation of asymmetry factor J1 with particle size parameter (a) and half-cone angle (b).

    图 9  微粒在不均匀温度场中的热泳力形成示意图 (a) 不均匀温度场; (b) 气体分子与微粒的碰撞

    Fig. 9.  Schematic of thermophorestic force formation of microparticle in non-uniform temperature field: (a) Non-uniform temperature field; (b) collision between gas molecules and microparticle.

    图 10  以光阱中心为原点在竖直方向上气体温度变化及拟合曲线

    Fig. 10.  Gas temperature variation and fitting curve in the vertical direction with the center of the optical trap as the origin.

    图 11  热泳力随团簇尺寸参数(a)和温度梯度(b)的变化

    Fig. 11.  Variation of thermophoretic force with cluster size parameter (a) and temperature gradient (b).

    Baidu
  • [1]

    Ashkin A, Dziedzic J 1975 Science 187 1073Google Scholar

    [2]

    黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣 2014 63 178802Google Scholar

    Huang X F, Li S J, Zhou D H, Zhao G J, Wang G Q, Xu J R 2014 Acta Phys. Sin. 63 178802Google Scholar

    [3]

    Huisken J, Stelzer E H K 2002 Opt. Lett. 27 1223Google Scholar

    [4]

    Meresman H, Wills J B, Summers M, McGloin D, Reid J P 2009 Phys. Chem. Chem. Phys. 11 11333Google Scholar

    [5]

    Zhang Z, Cannan D, Liu J J, Zhang P, Christodoulides D N, Chen Z G 2012 Opt. Express 20 16212Google Scholar

    [6]

    Pan Y L, Hill S C, Coleman M 2012 Opt. Express 20 5325Google Scholar

    [7]

    Rings D, Schachoff R, Selmke M, Cichos F, Kroy K 2010 Phys. Rev. Lett. 105 090604Google Scholar

    [8]

    Gong Z Y, Pan Y L, Wang C J 2016 Rev. Sci. Instrum. 87 156Google Scholar

    [9]

    Keh H J, Tu H J 2001 Colloids Surfaces A 176 213Google Scholar

    [10]

    Malaia N V, Shchukin E R 2019 Tech. Phys. 64 458Google Scholar

    [11]

    Chang Y C, Keh H J 2012 Journal of Aerosol Science 50 1Google Scholar

    [12]

    Maxwell J C 1879 Phil. Trans. R. Soc. 170 231Google Scholar

    [13]

    Kennard E H 1938 Kinetic Theory of Gases (New York: McGraw-Hill) p291

    [14]

    Cui J, Su J J, Wang J, Xia G D, Li Z G 2021 Acta Phys. Sin. 70 055101 [崔杰, 苏俊杰, 王军, 夏国栋, 李志刚 2021 70 055101]Google Scholar

    Cui J, Su J J, Wang J, Xia G D, Li Z G 2021 Acta Phys. Sin. 70 055101Google Scholar

    [15]

    Greene W M, Spjut R E, Bar-Ziv E, Sarofim A F, Longwell J P 1985 J. Opt. Soc. Am. B 2 998Google Scholar

    [16]

    Chernyah V, Beresnev S 1993 J. Aerosol Sci. 24 857Google Scholar

    [17]

    Mackowski D W 1989 Int. J. Heat Mass Transf. 32 843Google Scholar

    [18]

    Frueh J, Rutkowski S, Si T, Ren Y X, Gai M, Tverdokhlebov S I, Qiu G, Schmitt J, He Q, Wang J 2021 Appl. Surf. Sci. 549 149319Google Scholar

    [19]

    Burelbach J, Zupkauskas M, Lamboll R, Lan Y, Eiser E 2017 J. Chem. Phys. 147 094906Google Scholar

    [20]

    Li L, Loyalka S K, Tamadate T, Sapkota D, Ouyang H, Hogan Jr C J 2024 J. Aerosol Sci. 178 106337Google Scholar

    [21]

    Li W, Davis E J 1995 J. Aerosol Sci. 26 1063Google Scholar

    [22]

    Zheng F, Davis E J 2001 Aerosol Sci. 32 1421Google Scholar

    [23]

    Bosworth R W, Ventura A L, Ketsdever A D, Gimelshein S F 2016 J. Fluid Mech. 805 207Google Scholar

    [24]

    黄雪峰, 陈矗, 李嘉欣, 张敏琦, 李盛姬 2023 72 174201Google Scholar

    Huang X F, Chen C, Li J X, Zhang M Q, Li S J 2023 Acta Phys. Sin. 72 174201Google Scholar

    [25]

    Dusel P W, Kerker M, Cooke D D 1979 J. Opt. Sot. Am. 69 55Google Scholar

    [26]

    Pluchino A B 1983 Appl. Opt. 22 103Google Scholar

    [27]

    Yalamov Y I, Kutukov V B, Shchukin E R 1976 J. Colioid Interface Sci. 57 564Google Scholar

    [28]

    McPeak K M, Jayanti S V, Kress S J, Meyer S, Iotti S, Rossinelli A, Norris D J 2015 ACS Photonics 2 326Google Scholar

    [29]

    Wang H Y, Wang J J, Dong W Q, Han Y P, Ambrosio L A, Liu L 2021 Opt. Express 29 26894Google Scholar

    [30]

    Epstein P S 1929 Z. Phys. 54 537Google Scholar

  • [1] 刘旺旺, 张克学, 王军, 夏国栋. 过渡区内纳米颗粒的曳力特性模拟研究.  , 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [2] 李国倡, 郭孔英, 张家豪, 孙维鑫, 朱远惟, 李盛涛, 魏艳慧. 电缆附件用硅橡胶力-热老化特性及电-热-力多物理场耦合仿真研究.  , 2024, 73(7): 070701. doi: 10.7498/aps.73.20231869
    [3] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应.  , 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [4] 谢宝豪, 陈华俊, 孙轶. 多模光力系统中光力诱导透明引起的慢光效应.  , 2023, 72(15): 154203. doi: 10.7498/aps.72.20230663
    [5] 黄雪峰, 陈矗, 李嘉欣, 张敏琦, 李盛姬. 基于激光悬浮的单颗微米粒子/纳米团簇的散射强度分布测量.  , 2023, 72(17): 174201. doi: 10.7498/aps.72.20230499
    [6] 俞奕飞, 曹毅. 从蘸笔纳米刻印术到力化学打印.  , 2021, 70(2): 024202. doi: 10.7498/aps.70.20201537
    [7] 徐琦, 孙小伟, 宋婷, 温晓东, 刘禧萱, 王羿文, 刘子江. 不同缺陷态下具有高光力耦合率的新型一维光力晶体纳米梁.  , 2021, 70(22): 224210. doi: 10.7498/aps.70.20210925
    [8] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚. 自由分子区内纳米颗粒的热泳力计算.  , 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [9] 苗兵. 卡西米尔力.  , 2020, 69(8): 080505. doi: 10.7498/aps.69.20200450
    [10] 邓长发, 燕少安, 王冬, 彭金峰, 郑学军. 基于导电原子力显微镜的单根GaN纳米带光调控力电耦合性能.  , 2019, 68(23): 237304. doi: 10.7498/aps.68.20191097
    [11] 宁效龙, 王志章, 裴春莹, 尹亚玲. 非线性晶体产生的空心光束中大尺寸粒子囚禁与导引.  , 2018, 67(1): 018701. doi: 10.7498/aps.67.20171571
    [12] 张书赫, 梁振, 周金华. 运用四元数分析椭球微粒所受的光阱力.  , 2017, 66(4): 048701. doi: 10.7498/aps.66.048701
    [13] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力.  , 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [14] 沈明仁, 刘锐, 厚美瑛, 杨明成, 陈科. 自扩散泳微观转动马达的介观模拟.  , 2016, 65(17): 170201. doi: 10.7498/aps.65.170201
    [15] 林建潇, 吴九汇, 刘爱群, 陈喆, 雷浩. 光梯度力驱动的纳米硅基光开关.  , 2015, 64(15): 154209. doi: 10.7498/aps.64.154209
    [16] 刘岩, 张文明, 仲作阳, 彭志科, 孟光. 光梯度力驱动纳谐振器的非线性动力学特性研究.  , 2014, 63(2): 026201. doi: 10.7498/aps.63.026201
    [17] 张志刚, 刘丰瑞, 张青川, 程腾, 伍小平. 空间散斑场捕获大量吸光性颗粒及其红外显微观测.  , 2014, 63(2): 028701. doi: 10.7498/aps.63.028701
    [18] 韩国霞, 韩一平. 激光对含偏心核球形粒子的辐射俘获力.  , 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [19] 吴惠彬, 梅凤翔. Lagrange系统在施加陀螺力后的对称性.  , 2005, 54(6): 2474-2477. doi: 10.7498/aps.54.2474
    [20] 周光召. 双力程核子力的讨论.  , 1955, 11(4): 299-316. doi: 10.7498/aps.11.299
计量
  • 文章访问数:  1419
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-23
  • 修回日期:  2024-05-09
  • 上网日期:  2024-05-15
  • 刊出日期:  2024-07-05

/

返回文章
返回
Baidu
map