-
利用导电原子力显微镜技术研究了单根GaN纳米带在光调控下的力电耦合性能. 首先使用化学气相沉积法制备出结晶性良好的GaN纳米带, 然后将GaN纳米带分散到高定向热解石墨基底上, 利用探针作为微电极构成基于单根GaN纳米带的两端结构压电器件. 通过改变探针加载力的大小和引入外加光源调控GaN纳米带的电流输运性能, 对单根GaN纳米带在光调控下的力电耦合性能变化规律进行研究. 研究发现, 在有光条件下单根GaN纳米带整流开关比明显增大, 随着加载力的增大, 单根GaN纳米带电流响应值增大但整流特性减弱. 最后, 基于压电电子学和光电导效应理论, 通过分析肖特基势垒在加载力及光照作用下的变化规律解释了实验现象.Gallium nitride (GaN) nanobelt with a quasi-one-dimensional structure possesses good piezoelectric and photoelectric properties. In this paper, the electromechanical coupling properties of single GaN nanobelt under optical modulation are studied by conductive atomic force microscope. The GaN nanobelts with good crystallization are prepared by the chemical vapor deposition method, then they are ultrasonically dispersed on a highly oriented pyrolysis graphite substrate. The conductive probe is used as a microelectrode to construct the two-terminal piezoelectric device based on a single GaN nanobelt, which has good electromechanical coupling performance. By changing the loading force of the probe and introducing an external light source to regulate the current transport properties of GaN nanobelt, the coupling between mechanical and semiconducting properties under light modulating is studied. It is found that the coupling between mechanical and semiconducting performance of the single GaN nanobelt can be effectively modulated by an external light source, and the electromechanical switch ratio of the single GaN nanobelt increases obviously in the presence of light. With the loading force increasing, the current response of the single GaN nanobelt increases but the rectification characteristics decrease. Finally, the experimental results are explained by the piezoelectric electronics and photoconductivity theory. This work is expected to provide a scientific basis for the performance modulation of nano-piezoelectric optoelectronic devices based on low-dimensional GaN nanomaterials.
[1] Johnson J C, Choi H J, Knutsen K P, Schaller R D, Yang P D, Saykally R J 2002 Nature Mater. 1 106
Google Scholar
[2] Kang M S, Lee C H, Park J B, Yoo H, Yi G C 2012 Nano Energy 1 391
Google Scholar
[3] Kim H M, Cho Y H, Lee H, Kim S I, Ryu S R, Kim D Y, Kang T W, Chung K S 2004 Nano Lett. 4 1059
Google Scholar
[4] Sun S X, Wei Z C, Xia P H, Wang W B, Duan Z Y, Li Y X, Zhong Y H, Ding P, Jin Z 2018 Chin. Phys. B 27 28502
Google Scholar
[5] Zhao S L, Wang Z Z, Chen Z D, Wang M J, Dai Y, Ma X H, Zhang J C, Hao Y 2019 Chin. Phys. B 28 27301
Google Scholar
[6] Hou M C, Xie G, Sheng K 2019 Chin. Phys. B 28 37302
Google Scholar
[7] Gon M J, Wang Q, Yan J D, Liu F Q, Feng C, Wang X L, Wang Z G 2016 Chin. Phys. Lett. 33 117303
Google Scholar
[8] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红 2018 67 178501
Google Scholar
Zhou X Y, Lv Y J, Tan X, Wang Y G, Song X B, He Z Z, Zhang Z R, Liu Q B, Han T T, Fang Y L, Feng Z H 2018 Acta Phys. Sin. 67 178501
Google Scholar
[9] Holmes M J, Choi K, Kako S, Arita M, Arakawa, Y 2014 Nano Lett. 14 982
Google Scholar
[10] Fu K, Fu H Q, Huang X Q, Yang T H, Chen H, Baranowski I, Montes J, Yang C, Zhou J G, Zhao Y J 2019 IEEE Electron Device Lett. 40 375
Google Scholar
[11] Tchoe Y, Jo J, Kim M, Heo J, Yoo G, Sone C, Yi G C 2014 Adv. Mater. 26 3019
Google Scholar
[12] Tyagi P, Ramesh C, Sharma A, Husale S, Kushvaha S S, Senthil Kumar M 2019 Mater. Sci. Semicond. Process. 97 80
Google Scholar
[13] Hu W G, Kalantar-Zadeh K, Gupta K, Liu C P 2018 MRS Bull. 43 936
Google Scholar
[14] Goswami L, Pandey R, Gupta G 2018 Appl. Surf. Sci. 449 186
Google Scholar
[15] Aggarwal N, Krishna S, Jain S K, Arora A, Goswami L, Sharma A, Husale S, Gundimeda A, Gupta G 2019 J. Alloys Compd. 785 883
Google Scholar
[16] Huang J Y, Zheng H, Mao S X, Li Q, Wang G T 2011 Nano Lett. 11 1618
Google Scholar
[17] Yu R M, Dong L, Pan C F, Niu S M, Liu H F, Liu W, Chua S, Chi D Z, Wang Z L 2012 Adv. Mater. 24 3532
Google Scholar
[18] Yu R M, Wu W Z, Ding Y, Wang Z L 2013 ACS Nano 7 6403
Google Scholar
[19] Peng M Z, Liu Y D, Yu A F, Zhang Y, Liu C H, Liu J Y, Wu W, Zhang K, Shi X Q, Kou J Z, Zhai J Y, Wang Z L 2016 ACS Nano 10 1572
Google Scholar
[20] Wang X F, Yu R M, Peng W B, Wu W Z, Li S T, Wang Z L 2015 Adv. Mater. 27 8067
Google Scholar
[21] Du C H, Jiang C Y, Zuo P, Huang X, Pu X, Zhao Z F, Zhou Y L, Li L X, Chen H, Hu W G, Wang Z L 2015 Small 11 6071
Google Scholar
[22] Liu H T, Hua Q L, Yu R M, Yang Y C, Zhang T P, Zhang Y J, Pan C F 2016 Adv. Funct. Mater. 26 5307
Google Scholar
[23] Lin F, Chen S W, Meng J, Tse G, Fu X W, Xu F J, Shen B, Liao Z M, Yu D P 2014 Appl. Phys. Lett. 105 073103
Google Scholar
[24] Zhao Z F, Pu X, Han C B, Du C H, Li L X, Jiang C Y, Hu W G, Wang Z L 2015 ACS Nano 9 8578
Google Scholar
[25] Wang S J, Cheng G, Cheng K, Jiang X H, Du Z L 2011 Nanoscale Res. Lett. 6 541
Google Scholar
[26] Yang Y, Qi J J, Gu Y S, Guo W, Zhang Y 2010 Appl. Phys. Lett. 96 123103
Google Scholar
[27] Zhang S, Gao L, Song A S, Zheng X H, Yao Q Z, Ma T B, Di Z F, Feng X Q, Li Q Y 2018 Nano Lett. 18 6030
Google Scholar
[28] Wu D X, Cheng H B, Zheng X J, Wang X Y, Wang D, Li J 2015 Chin. Phys. Lett. 32 108102
Google Scholar
[29] Yan X Y, Peng J F, Yan S A, Zheng X J 2018 J. Electron. Mater. 47 3869
Google Scholar
[30] Sun X, Liu W B, Jiang D S, Liu Z S, Zhang S, Wang L L, Wang H, Zhu J J, Duan L H, Wang Y T, Zhao D G, Zhang S M, Yang H 2008 J. Phys. D: Appl. Phys. 41 165108
Google Scholar
[31] Yang G, Li Y F, Yao B, Ding Z H, Deng R, Fang X, Wei Z P 2015 ACS Appl. Mater. Interfaces 7 16653
Google Scholar
[32] Ryu S R, Ram S D G, Lee S J, Cho H D, Lee S, Kang T W, Kwon S, Yang W, Shin S, Woo Y 2015 Appl. Surf. Sci. 347 793
Google Scholar
-
图 3 (a)−(c)暗场下单根GaN纳米带的二维电流形貌图, 加载力分别为30, 50, 70 nN; (e)−(f)光场下单根GaN纳米带的二维电流形貌图, 加载力分别为30, 50, 70 nN; 插图为电流形貌图截面处的电流值
Fig. 3. (a)−(c) 2-D current topography of a single GaN nanobelt under dark condition with the loading forces of 30 nN, 50 nN and 70 nN, respectively; (d)−(f) 2-D current topography of a single GaN nanobelt under light condition with the loading forces of 30 nN, 50 nN and 70 nN, respectively. The insert shows the current value at the cross section of 2-D current topography.
图 4 GaN纳米带单点I-V曲线 (a), (b)暗场不同加载力下的I-V曲线及对数坐标形式; (c), (d)光场不同加载力下的I-V曲线及对数坐标形式
Fig. 4. Single point I-V curves of a single GaN nanobelt: (a), (b) I-V curve and its logarithmic coordinate with different loading forces under dark condition; (c), (d) I-V curve and its logarithmic coordinate with different loading forces under light condition.
-
[1] Johnson J C, Choi H J, Knutsen K P, Schaller R D, Yang P D, Saykally R J 2002 Nature Mater. 1 106
Google Scholar
[2] Kang M S, Lee C H, Park J B, Yoo H, Yi G C 2012 Nano Energy 1 391
Google Scholar
[3] Kim H M, Cho Y H, Lee H, Kim S I, Ryu S R, Kim D Y, Kang T W, Chung K S 2004 Nano Lett. 4 1059
Google Scholar
[4] Sun S X, Wei Z C, Xia P H, Wang W B, Duan Z Y, Li Y X, Zhong Y H, Ding P, Jin Z 2018 Chin. Phys. B 27 28502
Google Scholar
[5] Zhao S L, Wang Z Z, Chen Z D, Wang M J, Dai Y, Ma X H, Zhang J C, Hao Y 2019 Chin. Phys. B 28 27301
Google Scholar
[6] Hou M C, Xie G, Sheng K 2019 Chin. Phys. B 28 37302
Google Scholar
[7] Gon M J, Wang Q, Yan J D, Liu F Q, Feng C, Wang X L, Wang Z G 2016 Chin. Phys. Lett. 33 117303
Google Scholar
[8] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红 2018 67 178501
Google Scholar
Zhou X Y, Lv Y J, Tan X, Wang Y G, Song X B, He Z Z, Zhang Z R, Liu Q B, Han T T, Fang Y L, Feng Z H 2018 Acta Phys. Sin. 67 178501
Google Scholar
[9] Holmes M J, Choi K, Kako S, Arita M, Arakawa, Y 2014 Nano Lett. 14 982
Google Scholar
[10] Fu K, Fu H Q, Huang X Q, Yang T H, Chen H, Baranowski I, Montes J, Yang C, Zhou J G, Zhao Y J 2019 IEEE Electron Device Lett. 40 375
Google Scholar
[11] Tchoe Y, Jo J, Kim M, Heo J, Yoo G, Sone C, Yi G C 2014 Adv. Mater. 26 3019
Google Scholar
[12] Tyagi P, Ramesh C, Sharma A, Husale S, Kushvaha S S, Senthil Kumar M 2019 Mater. Sci. Semicond. Process. 97 80
Google Scholar
[13] Hu W G, Kalantar-Zadeh K, Gupta K, Liu C P 2018 MRS Bull. 43 936
Google Scholar
[14] Goswami L, Pandey R, Gupta G 2018 Appl. Surf. Sci. 449 186
Google Scholar
[15] Aggarwal N, Krishna S, Jain S K, Arora A, Goswami L, Sharma A, Husale S, Gundimeda A, Gupta G 2019 J. Alloys Compd. 785 883
Google Scholar
[16] Huang J Y, Zheng H, Mao S X, Li Q, Wang G T 2011 Nano Lett. 11 1618
Google Scholar
[17] Yu R M, Dong L, Pan C F, Niu S M, Liu H F, Liu W, Chua S, Chi D Z, Wang Z L 2012 Adv. Mater. 24 3532
Google Scholar
[18] Yu R M, Wu W Z, Ding Y, Wang Z L 2013 ACS Nano 7 6403
Google Scholar
[19] Peng M Z, Liu Y D, Yu A F, Zhang Y, Liu C H, Liu J Y, Wu W, Zhang K, Shi X Q, Kou J Z, Zhai J Y, Wang Z L 2016 ACS Nano 10 1572
Google Scholar
[20] Wang X F, Yu R M, Peng W B, Wu W Z, Li S T, Wang Z L 2015 Adv. Mater. 27 8067
Google Scholar
[21] Du C H, Jiang C Y, Zuo P, Huang X, Pu X, Zhao Z F, Zhou Y L, Li L X, Chen H, Hu W G, Wang Z L 2015 Small 11 6071
Google Scholar
[22] Liu H T, Hua Q L, Yu R M, Yang Y C, Zhang T P, Zhang Y J, Pan C F 2016 Adv. Funct. Mater. 26 5307
Google Scholar
[23] Lin F, Chen S W, Meng J, Tse G, Fu X W, Xu F J, Shen B, Liao Z M, Yu D P 2014 Appl. Phys. Lett. 105 073103
Google Scholar
[24] Zhao Z F, Pu X, Han C B, Du C H, Li L X, Jiang C Y, Hu W G, Wang Z L 2015 ACS Nano 9 8578
Google Scholar
[25] Wang S J, Cheng G, Cheng K, Jiang X H, Du Z L 2011 Nanoscale Res. Lett. 6 541
Google Scholar
[26] Yang Y, Qi J J, Gu Y S, Guo W, Zhang Y 2010 Appl. Phys. Lett. 96 123103
Google Scholar
[27] Zhang S, Gao L, Song A S, Zheng X H, Yao Q Z, Ma T B, Di Z F, Feng X Q, Li Q Y 2018 Nano Lett. 18 6030
Google Scholar
[28] Wu D X, Cheng H B, Zheng X J, Wang X Y, Wang D, Li J 2015 Chin. Phys. Lett. 32 108102
Google Scholar
[29] Yan X Y, Peng J F, Yan S A, Zheng X J 2018 J. Electron. Mater. 47 3869
Google Scholar
[30] Sun X, Liu W B, Jiang D S, Liu Z S, Zhang S, Wang L L, Wang H, Zhu J J, Duan L H, Wang Y T, Zhao D G, Zhang S M, Yang H 2008 J. Phys. D: Appl. Phys. 41 165108
Google Scholar
[31] Yang G, Li Y F, Yao B, Ding Z H, Deng R, Fang X, Wei Z P 2015 ACS Appl. Mater. Interfaces 7 16653
Google Scholar
[32] Ryu S R, Ram S D G, Lee S J, Cho H D, Lee S, Kang T W, Kwon S, Yang W, Shin S, Woo Y 2015 Appl. Surf. Sci. 347 793
Google Scholar
计量
- 文章访问数: 8919
- PDF下载量: 94
- 被引次数: 0