搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光悬浮的单颗微米粒子/纳米团簇的散射强度分布测量

黄雪峰 陈矗 李嘉欣 张敏琦 李盛姬

引用本文:
Citation:

基于激光悬浮的单颗微米粒子/纳米团簇的散射强度分布测量

黄雪峰, 陈矗, 李嘉欣, 张敏琦, 李盛姬

Measurement of scattering intensity distribution of single microparticles/nanoclusters based on laser levitation

Huang Xue-Feng, Chen Chu, Li Jia-Xin, Zhang Min-Qi, Li Sheng-Ji
PDF
HTML
导出引用
  • 为了探索微/纳米粒子的散射特性, 提出采用贝塞尔光束悬浮和散射测量耦合的方法搭建悬浮散射测试系统装置, 对单颗微米粒子/纳米团簇的散射强度分布进行精确测量. 首先利用两束反向传输的贝塞尔光束对多种类型和尺寸的粒子/团簇进行悬浮, 判定粒子的悬浮稳定性; 然后对悬浮粒子以9.2'' 的角分辨率在平面2π角度内的散射强度分布进行测量. 模拟计算了激光作用下粒子的受力以及不同参数粒子的散射强度分布, 并与实验结果进行对比, 深入地分析了环境因素对散射测试系统不确定度的干扰程度, 详细讨论了悬浮不稳定性对散射测量结果的影响. 研究结果表明, 反向传输的贝塞尔光束可对金属镁、铝和石墨等粒子/团簇进行稳定悬浮, 其相对不稳定度小于0.15, 悬浮过程中光泳力起主导作用; 单颗微米粒子/纳米团簇的散射强度分布符合Mie粒子散射特征, 折射率虚部大的粒子具有更强的前向散射特性, 粒子尺寸参数越大, 则前向散射作用越强. 单颗微粒散射强度分布的精确测量证实了悬浮散射测试系统的通用性和可靠性, 为深入认识物质散射特性提供了一种新的研究手段.
    The scattering measurement of particulates in gaseous medium is helpful in understanding light transmission, laser detection, combustion radiation and atmospheric environment. In order to explore the scattering characteristics of micron-/nano-sized particles, this paper proposes a method of accurately measuring the scattering intensity distribution of a single micron-sized particles/nanoclusters by combining laser levitation and scattering measurement. An experimental apparatus is first built based on the counter-propagated bi-Bessel beams levitation system and scattering test system. The microparticles/nanoclusters of various matters and sizes are then levitated and their stabilities are evaluated. Finally, the scattering intensity distribution of levitated particles within 2π scattering angle is accurately measured with an angular resolution of 9.2″. The forces acting on particles under laser irradiation and the scattering intensity distribution of different particle parameters are simulated and calculated, and compared with experimental results. The influence of noise on the uncertainty of the scattering measurement system is analyzed in depth, including background light, laser beam, and reflected light from the walls. The results show that the signal-to-noise ratio of scattering measurement for metallic magnesium and aluminum, whether single particles or clusters, are both greater than 20 dB and their maximum values are both 94.6 dB in a range of 2π angle. For graphite nanoclusters, the signal-to-noise ratio in the backscattering direction is relatively poor. The influence of levitation instability on the scattering measurement results is estimated in detail, verifying that the influence of levitation instability in the test system on the scattering measurement is ignorable. Metallic magnesium, aluminum, and graphite particles can be stably levitated by the counter-propagated bi-Bessel beams, with a relative instability of less than 0.15. During the levitation, the photophoretic force plays a dominant role. The scattering intensity distribution of a single micron-sized particles and nanoclusters both conform to the scattering characteristics of Mie particles. Microparticles with large refractive index imaginary parts have stronger forward scattering characteristics. The larger the particle size parameter, the stronger the forward scattering effect becomes. The accurate measurement of the scattering intensity distribution of a single microparticles confirms the versatility and reliability of the levitation scattering test system, providing a new research method for in-depth understanding of the scattering characteristics of substances.
      通信作者: 李盛姬, shengjili@hdu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 52027809, 51976050)资助的课题.
      Corresponding author: Li Sheng-Ji, shengjili@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52027809, 51976050).
    [1]

    Sioutas C, Kim S, Chang M, Terrell L L, Gong H 2000 Atmos. Environ. 34 4829Google Scholar

    [2]

    Zhang H, Nie W, Liang Y, Chen J, Peng H 2021 Opt. Laser. Eng. 144 106642Google Scholar

    [3]

    Minton A P 2016 Anal. Biochem. 501 4Google Scholar

    [4]

    张宇微, 颜燕, 农大官, 徐春华, 李明 2016 65 218702Google Scholar

    Zhang Y W, Yan Y, Nong D G, Xu C H, Li M 2016 Acta Phys. Sin. 65 218702Google Scholar

    [5]

    王清华, 张颖颖, 来建成, 李振华, 贺安之 2007 56 1203Google Scholar

    Wang Q H, Zhang Y Y, Lai J C, Li Z H, He A Z 2007 Acta Phys. Sin. 56 1203Google Scholar

    [6]

    Collins M, Kauppila A, Karmenyan A, Gajewski L, Szewczyk K, Kinnunen M, Myllylä R 2010 Laser Applications in Life Sciences Oulu, Finland, June 9–11, 2010 p737619

    [7]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [8]

    Omori R, Kobayashi T, Suzuki A 1997 Opt. Lett. 22 816Google Scholar

    [9]

    Esseling M, Rose P, Alpmann C, Denz C 2012 Appl. Phys. Lett. 101 131

    [10]

    Huisken J, Stelzer E H K 2002 Opt. Lett. 27 1223Google Scholar

    [11]

    Meresman H, Wills J B, Summers M, McGloin D, Reid J P 2009 Phys. Chem. Chem. Phys. 11 11333Google Scholar

    [12]

    Pan Y L, Hill S C, Coleman M 2012 Opt. Express 20 5325Google Scholar

    [13]

    Gong Z, Pan Y L, Wang C 2016 Rev. Sci. Instrum. 87 156

    [14]

    Gong Z, Pan Y L, Videen G, Wang C 2017 Chem. Phys. Lett. 689 100Google Scholar

    [15]

    黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣 2014 63 178802Google Scholar

    Huang X F, Li S J, Zhou D H, Zhao G J, Wang G Q, Xu J R 2014 Acta Phys. Sin. 63 178802Google Scholar

    [16]

    Grehan G, Gouesbet G 1980 Appl. Opt. 19 2485Google Scholar

    [17]

    付成花 2017 66 097301Google Scholar

    Fu C H 2017 Acta Phys. Sin. 66 097301Google Scholar

    [18]

    Gouesbet G 2019 J. Quant. Spectrosc. Radiat. Transfer 225 258Google Scholar

    [19]

    Misconi N Y, Oliver J P, Ratcliff K F, Rusk E T, Wang W X 1990 Appl. Opt. 29 2276Google Scholar

    [20]

    Nieminen T A, Loke V L Y, Stilgoe A B, Knöner G, Brańczyk A M, Heckenberg N R, Rubinsztein-Dunlop H 2007 J. Opt. A: Pure Appl. Opt. 9 S196Google Scholar

    [21]

    Palm K J, Murray J B, Narayan T C, Munday J N 2018 ACS Photonics 5 4677Google Scholar

    [22]

    McPeak K M, Jayanti S V, Kress S J, Meyer S, Iotti S, Rossinelli A, Norris D J 2015 ACS Photonics 2 326Google Scholar

    [23]

    Querry M R 1985 Optical Constants Contractor Report CRDCCR-85034

    [24]

    Mackowski D W 1989 Int. J. Heat Mass Transfer. 32 843Google Scholar

    [25]

    Talbot L, Cheng R K, Schefer R W, Willis D R 1980 J. Fluid Mech. 101 737Google Scholar

    [26]

    Redding B, Hill S C, Alexson D, Wang C, Pan Y L 2015 Opt. Express 23 3630Google Scholar

  • 图 1  激光悬浮的微粒粒子/纳米团簇散射光强分布测量实验装置示意图 (a) 光学结构; (b) 机械机构

    Fig. 1.  Schematic of experimental setup for measuring scattered light intensity distribution of laser levitated microparticles/nanoclusters: (a) The optical structure; (b) the mechanical structure.

    图 2  相对不稳定度的数据处理流程图

    Fig. 2.  Flow chart of relative instability data processing.

    图 3  (a) 散射强度的原始信号; (b) 滤波后的信号; (c) 散射强度分布的矢极图

    Fig. 3.  (a) Raw signals of scattering intensity; (b) filtered signals; (c) contour of scattering intensity distribution in polar coordinates.

    图 4  (a) 镁粒子的扫描电镜图; (b) 悬浮镁粒子的波动性; (c) 20次重复测量的信号

    Fig. 4.  (a) SEM picture of Mg microparticle; (b) fluctuation of levitated Mg microparticle; (c) signals of 20 repetitive measurements.

    图 5  (a) 第一组镁粒子的悬浮图; (b) 第一组镁粒子的散射强度分布矢极图; (c) 第二组镁粒子的悬浮图; (d) 第二组镁粒子的散射强度分布矢极图

    Fig. 5.  (a) A picture of the first levitated Mg microparticle; (b) contour of scattering intensity distribution of the first levitated Mg microparticle in polar coordinates; (c) the picture of the second levitated Mg microparticle; (d) contour of scattering intensity distribution of the second levitated Mg microparticle in polar coordinates.

    图 6  (a) 纳米铝团簇的悬浮图; (b) 纳米铝团簇的散射强度分布矢极图; (c) 纳米石墨团簇的悬浮图; (d) 纳米石墨团簇的散射强度分布矢极图

    Fig. 6.  (a) The picture of levitated Al nanocluster; (b) contour of scattering intensity distribution of levitated Al nanocluster in polar coordinates; (c) the picture of levitated graphite nanocluster; (d) contour of scattering intensity distribution of levitated graphite nanocluster in polar coordinates.

    图 7  激光作用于空气中粒子的受力示意图

    Fig. 7.  Schematic of the force exerted by laser on microparticles in the air.

    图 8  粒子波动对散射测量影响的示意图

    Fig. 8.  Schematic of the influence of microparticle fluctuation on scattering test.

    图 9  (a) 环境光信号; (b) 加入滤光片前后悬浮激光散射信号; (c) 粒子悬浮前后悬浮激光散射信号; (d) 标准工况下散射信号与其他信号

    Fig. 9.  (a) Signal from background light; (b) laser scattering signals adding filters or not; (c) laser scattering signals of levitated microparticle or not; (d) scattering signals and other signals under standard operating conditions.

    图 10  散射强度测量信噪比矢极图 (a) 第一组镁粒子; (b) 第二组镁粒子; (c) 纳米铝团簇; (d) 纳米石墨团簇

    Fig. 10.  Contour of signal-to-noise ratio of scattering intensity measurement in polar coordinates: (a) The first levitated Mg microparticle; (b) the second levitated Mg microparticle; (c) levitated Al nanocluster; (d) levitated graphite nanocluster.

    图 11  球形粒子的散射强度分布(α = 25) (a) 水; (b) 镁; (c) 铝; (d) 石墨

    Fig. 11.  Contour of scattering intensity distribution of spherical microparticles in polar coordinates: (a) Water; (b) Mg; (c) Al; (d) graphite.

    图 12  不同尺寸参数对散射强度的影响 (a) α = 2.5 (水); (b) α = 12.5 (水); (c) α = 25 (水); (d) α = 2.5 (Mg); (e) α = 12.5 (Mg); (f) α = 25 (Mg)

    Fig. 12.  Effect of different size parameters on scattering intensity: (a) α = 2.5 (water); (b) α = 12.5 (water); (c) α = 25 (water); (d) α = 2.5 (Mg); (e) α = 12.5 (Mg); (f) α = 25 (Mg).

    表 1  金属镁、铝和石墨粒子受激光作用时的光泳力和辐射压力

    Table 1.  Photophorestic force and radiation pressure of Mg, Al, and graphite microparticles exerted by the laser beam.

    类型密度折射率[2426]热导率光泳力辐射压力重力
    ρg/(103 kg·m–3)mks/(W·m–1·K–1)Fp/(10–12 N)Fa/(10–14 N)G/(10–12 N)
    Mg1.740.766 + 4.783 i1567.026.861.12
    Al2.700.728 + 5.66 i2374.627.751.73
    C2.301.588 + 0.8174 i1517.255.531.47
    下载: 导出CSV
    Baidu
  • [1]

    Sioutas C, Kim S, Chang M, Terrell L L, Gong H 2000 Atmos. Environ. 34 4829Google Scholar

    [2]

    Zhang H, Nie W, Liang Y, Chen J, Peng H 2021 Opt. Laser. Eng. 144 106642Google Scholar

    [3]

    Minton A P 2016 Anal. Biochem. 501 4Google Scholar

    [4]

    张宇微, 颜燕, 农大官, 徐春华, 李明 2016 65 218702Google Scholar

    Zhang Y W, Yan Y, Nong D G, Xu C H, Li M 2016 Acta Phys. Sin. 65 218702Google Scholar

    [5]

    王清华, 张颖颖, 来建成, 李振华, 贺安之 2007 56 1203Google Scholar

    Wang Q H, Zhang Y Y, Lai J C, Li Z H, He A Z 2007 Acta Phys. Sin. 56 1203Google Scholar

    [6]

    Collins M, Kauppila A, Karmenyan A, Gajewski L, Szewczyk K, Kinnunen M, Myllylä R 2010 Laser Applications in Life Sciences Oulu, Finland, June 9–11, 2010 p737619

    [7]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [8]

    Omori R, Kobayashi T, Suzuki A 1997 Opt. Lett. 22 816Google Scholar

    [9]

    Esseling M, Rose P, Alpmann C, Denz C 2012 Appl. Phys. Lett. 101 131

    [10]

    Huisken J, Stelzer E H K 2002 Opt. Lett. 27 1223Google Scholar

    [11]

    Meresman H, Wills J B, Summers M, McGloin D, Reid J P 2009 Phys. Chem. Chem. Phys. 11 11333Google Scholar

    [12]

    Pan Y L, Hill S C, Coleman M 2012 Opt. Express 20 5325Google Scholar

    [13]

    Gong Z, Pan Y L, Wang C 2016 Rev. Sci. Instrum. 87 156

    [14]

    Gong Z, Pan Y L, Videen G, Wang C 2017 Chem. Phys. Lett. 689 100Google Scholar

    [15]

    黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣 2014 63 178802Google Scholar

    Huang X F, Li S J, Zhou D H, Zhao G J, Wang G Q, Xu J R 2014 Acta Phys. Sin. 63 178802Google Scholar

    [16]

    Grehan G, Gouesbet G 1980 Appl. Opt. 19 2485Google Scholar

    [17]

    付成花 2017 66 097301Google Scholar

    Fu C H 2017 Acta Phys. Sin. 66 097301Google Scholar

    [18]

    Gouesbet G 2019 J. Quant. Spectrosc. Radiat. Transfer 225 258Google Scholar

    [19]

    Misconi N Y, Oliver J P, Ratcliff K F, Rusk E T, Wang W X 1990 Appl. Opt. 29 2276Google Scholar

    [20]

    Nieminen T A, Loke V L Y, Stilgoe A B, Knöner G, Brańczyk A M, Heckenberg N R, Rubinsztein-Dunlop H 2007 J. Opt. A: Pure Appl. Opt. 9 S196Google Scholar

    [21]

    Palm K J, Murray J B, Narayan T C, Munday J N 2018 ACS Photonics 5 4677Google Scholar

    [22]

    McPeak K M, Jayanti S V, Kress S J, Meyer S, Iotti S, Rossinelli A, Norris D J 2015 ACS Photonics 2 326Google Scholar

    [23]

    Querry M R 1985 Optical Constants Contractor Report CRDCCR-85034

    [24]

    Mackowski D W 1989 Int. J. Heat Mass Transfer. 32 843Google Scholar

    [25]

    Talbot L, Cheng R K, Schefer R W, Willis D R 1980 J. Fluid Mech. 101 737Google Scholar

    [26]

    Redding B, Hill S C, Alexson D, Wang C, Pan Y L 2015 Opt. Express 23 3630Google Scholar

  • [1] 黄雪峰, 刘敏, 卢山, 张敏琦, 李盛姬, 罗丹. 强吸收纳米粒子团簇的光泳力悬浮及热泳力下的迁移行为.  , 2024, 73(13): 134206. doi: 10.7498/aps.73.20240288
    [2] 管丹丹, 贾金锋. 中国的表面物理.  , 2023, 72(23): 236801. doi: 10.7498/aps.72.20231858
    [3] 董攀, 田昌, 李杰, 王韬, 于海涛, 苏明旭, 何佳龙, 石金水. 基于Mie散射在线测量真空弧放电液滴方法探索.  , 2023, 72(8): 084203. doi: 10.7498/aps.72.20222406
    [4] 钟虓䶮, 李卓. 原子尺度材料三维结构、磁性及动态演变的透射电子显微学表征.  , 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [5] 王德, 沈容, 刘灿灿, 韦世强, 陆坤权. 纳米TiO2颗粒对电流变悬浮液中硅油的挥发增强效应.  , 2015, 64(15): 154704. doi: 10.7498/aps.64.154704
    [6] 赵虎, 华灯鑫, 毛建东, 周春艳. 基于粒子谱的多波长激光雷达近场大气光学参数校正方法.  , 2015, 64(12): 124208. doi: 10.7498/aps.64.124208
    [7] 赵宏刚, 温激鸿, 杨海滨, 吕林梅, 温熙森. 一种含柱形空腔结构橡胶层的吸声机理及优化.  , 2014, 63(13): 134303. doi: 10.7498/aps.63.134303
    [8] 孙兰君, 田兆硕, 任秀云, 张延超, 付石友. 溢油海水双向反射分布函数的建模及仿真.  , 2014, 63(13): 134211. doi: 10.7498/aps.63.134211
    [9] 冯黛丽, 冯妍卉, 张欣欣. 小尺寸铝纳米团簇的相变行为.  , 2013, 62(8): 083602. doi: 10.7498/aps.62.083602
    [10] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究.  , 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [11] 刘西川, 高太长, 秦健, 刘磊. 降雨对微波传输特性的影响分析.  , 2010, 59(3): 2156-2162. doi: 10.7498/aps.59.2156
    [12] 王慧琴, 刘正东. 光子晶体对非晶纳米团簇辐射特性的影响.  , 2009, 58(3): 1648-1654. doi: 10.7498/aps.58.1648
    [13] 吴大建, 刘晓峻. 金纳米球壳光学吸收的Mie理论分析.  , 2008, 57(8): 5138-5142. doi: 10.7498/aps.57.5138
    [14] 柯微娜, 程 茜, 钱梦騄. 测量单泡声致发光中气泡R(t)曲线的前向Mie散射技术.  , 2008, 57(6): 3629-3635. doi: 10.7498/aps.57.3629
    [15] 王清华, 张颖颖, 来建成, 李振华, 贺安之. Mie理论在生物组织散射特性分析中的应用.  , 2007, 56(2): 1203-1207. doi: 10.7498/aps.56.1203
    [16] 赵宏刚, 刘耀宗, 温激鸿, 郁殿龙, 温熙森. 含有周期球腔的黏弹性覆盖层消声性能分析.  , 2007, 56(8): 4700-4707. doi: 10.7498/aps.56.4700
    [17] 左浩毅, 杨经国. 基于气溶胶光学厚度反演大气气溶胶尺度分布.  , 2007, 56(10): 6132-6136. doi: 10.7498/aps.56.6132
    [18] 王治华, 贺应红, 左浩毅, 郑玉臣, 杨经国. 基于高斯光束特性的Mie散射大气激光雷达回波近场信号校正研究.  , 2006, 55(6): 3188-3192. doi: 10.7498/aps.55.3188
    [19] 盛阳, 宁西京. 气相碳原子成笼的动力学模拟.  , 2004, 53(4): 1039-1043. doi: 10.7498/aps.53.1039
    [20] 刘晓东, 李曙光, 侯蓝田, 王慧田. 含金属散射体的中红外无序介质的光子定域化理论研究.  , 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
计量
  • 文章访问数:  3716
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-01
  • 修回日期:  2023-06-06
  • 上网日期:  2023-06-29
  • 刊出日期:  2023-09-05

/

返回文章
返回
Baidu
map