搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

n型Bi2–x SbxTe3–ySey基化合物的缺陷结构调控与电热输运性能

李睿英 罗婷婷 李貌 陈硕 鄢永高 吴劲松 苏贤礼 张清杰 唐新峰

引用本文:
Citation:

n型Bi2–x SbxTe3–ySey基化合物的缺陷结构调控与电热输运性能

李睿英, 罗婷婷, 李貌, 陈硕, 鄢永高, 吴劲松, 苏贤礼, 张清杰, 唐新峰

Defect structure regulation and thermoelectric transfer performance in n-type Bi2–x SbxTe3–ySey-based compounds

Li Rui-Ying, Luo Ting-Ting, Li Mao, Chen Shuo, Yan Yong-Gao, Wu Jin-Song, Su Xian-Li, Zhang Qing-Jie, Tang Xin-Feng
PDF
HTML
导出引用
  • Bi2Te3基化合物是目前室温附近性能最好的热电材料, 但其存在着大量复杂的缺陷结构, 缺陷工程是调控材料热电性能的核心手段, 因此理解和有效地调控缺陷形态和浓度是获得高性能Bi2Te3基热电材料的关键. 本文系统地研究了四元n型Bi2–x SbxTe3–ySey基化合物的缺陷演化过程及其对热电输运性能的影响规律. Sb和Se的固溶引入的带电伴生结构缺陷使得材料的载流子浓度发生了巨大变化, 在Bi2–x SbxTe2.994Cl0.006样品中, Sb的固溶降低了反位缺陷${\mathrm{S}}{{\mathrm{b}}_{{\mathrm{T}}{{\mathrm{e}}_2}}}$形成能, 诱导产生了反位缺陷$ {\mathrm{S}}{{\mathrm{b}}_{{\mathrm{T}}{{\mathrm{e}}_2}}} $, 使得少数载流子空穴浓度从2.09×1016 cm–3增加至3.99×1017 cm–3, 严重劣化了电性能. 在Bi1.8Sb0.2Te2.994–ySeyCl0.006样品中, Se的固溶使得${\mathrm{S}}{{\mathrm{e}}_{{\mathrm{T}}{{\mathrm{e}}_2}}}$+${\mathrm{S}}{{\mathrm{b}}_{{\mathrm{Bi}}}}$的缺陷形成能更低, 抑制了反位缺陷${\mathrm{S}}{{\mathrm{b}}_{{\mathrm{T}}{{\mathrm{e}}_2}}}$的产生, Bi1.8Sb0.2Te2.694Se0.30Cl0.006样品的少数载流子空穴浓度降至1.49×1016 cm–3, 消除了其对材料热电性能的劣化效果, 显著地提升了材料的功率因子, 室温下达到4.49 mW/(m·K2). 结合Sb和Se固溶增强合金化散射降低材料的热导率, Bi1.8Sb0.2Te2.844Se0.15Cl0.006样品在室温下获得最大ZT值为0.98. 该研究为调控具有复杂成分的Bi2Te3基材料的点缺陷、载流子浓度和热电性能提供了重要的指导.
    Bi2Te3-based compounds are thermoelectric materials with the best performance near room temperature. The existence of a large number of complex defects makes defect engineering a core stratagem for adjusting and improving the thermoelectric performance. Therefore, understanding and effectively controlling the existence form and concentration of defects is crucial for achieving high-thermoelectric performance in Bi2Te3-based alloy. Herein, a series of Cl doped n-type quaternary Bi2–x SbxTe3–ySey compounds is synthesized by the zone-melting method. The correlation between defect evolution process and thermoelectric performance is systematically investigated by first-principles calculation and experiments. Alloying Sb on Bi site and Se on Te site induce charged structural defects, leading to a significant change in the carrier concentration. For Bi2–x SbxTe2.994Cl0.006 compounds, alloying Sb on Bi site reduces the formation energy of the ${\mathrm{S}}{{\text{b}}_{{\mathrm{Te}}}}_{_2}$ antisite defect, which generates the antisite defect ${\mathrm{S}}{{\text{b}}_{{\mathrm{Te}}}}_{_2}$ and accompanied with the increase of the minority carrier concentration from 2.09×1016 to 3.99×1017 cm–3. The increase of the minority carrier severely deteriorates the electrical transport properties. In contrast, alloying Se in the Bi1.8Sb0.2Te2.994–ySeyCl0.006 compound significantly lowers the formation energy of the complex defect ${\mathrm{S}}{{\mathrm{e}}_{{\mathrm{Te}}}}$+${\mathrm{S}}{{\mathrm{b}}_{{\mathrm{Bi}}}}$, which becomes more energetically favorable and suppresses the formation of the antisite defect ${\mathrm{S}}{{\text{b}}_{{\mathrm{Te}}}}_{_2}$. As a result, the concentration of minority carriers decreases to 1.46×1016 cm–3. This eliminates the deterioration effect of the minority carrier on the electrical transport properties of the material and greatly improves the power factor. A maximum power factor of 4.49 mW/(m·K2) is achieved for Bi1.8Sb0.2Te2.944Se0.05Cl0.006 compound at room temperature. By reducing thermal conductivity through intensifying the phonon scattering via alloying Sb and Se, the maximum ZT value of 0.98 is attained for Bi1.8Sb0.2Te2.844Se0.15Cl0.006 compound at room temperature. Our finding provides an important guidance for adjusting point defects, carrier concentrations, and thermoelectric performances in Bi2Te3-based compounds with complex compositions.
      通信作者: 罗婷婷, luotingting27@whut.edu.cn ; 唐新峰, tangxf@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52122108)、国家重点研发计划(批准号: 2018YFB0703600)和湖北隆中实验室自主创新项目(批准号: 2022ZZ-07)资助的课题.
      Corresponding author: Luo Ting-Ting, luotingting27@whut.edu.cn ; Tang Xin-Feng, tangxf@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52122108), the National Key Research and Development Program of China (Grant No. 2018YFB0703600), and the Independent and Innovative Project of Longzhong Laboratory in Hubei Province, China (Grant No. 2022ZZ-07).
    [1]

    Liu S X, Tian J L, Wu S, Zhang W, Luo M Y 2022 Nano Energy 93 106812Google Scholar

    [2]

    Hu B X, Shi X L, Zou J, Chen Z G 2022 Chem. Eng. J. 437 135268Google Scholar

    [3]

    Chen W Y, Shi X L, Zou J, Chen Z G 2022 Mater. Sci. Eng., R 151 100700Google Scholar

    [4]

    Han C G, Qian X, Li Q K, Deng B, Zhu Y B, Han Z J, Zhang W Q, Wang W C, Feng S P, Chen G, Liu W S 2020 Science 368 1091Google Scholar

    [5]

    Zhang Q, Yuan M, Pang K, Zhang Y, Wang R, Tan X, Wu G, Hu H, Wu J, Sun P, Liu G Q, Jiang J 2023 Adv. Mater. 35 2300338Google Scholar

    [6]

    Xie H Y, Hao S Q, Bao J K, Slade T J, Snyder G J, Wolverton C, Kanatzidis M G 2020 J. Am. Chem. Soc. 142 9553Google Scholar

    [7]

    Xie H, Zhao L D, Kanatzidis M G 2024 Interdiscip. Mater. 1 24Google Scholar

    [8]

    Liu Z, Hong T, Xu L, Wang S, Gao X, Chang C, Ding X, Xiao Y, Zhao L D 2022 Interdiscip. Mater. 2 161Google Scholar

    [9]

    Suh J, Yu K M, Fu D Y, Liu X Y, Yang F, Fan J, Smith D J, Zhang Y H, Furdyna J K, Dames C, Walukiewicz W, Wu J Q 2015 Adv. Mater. 27 3681Google Scholar

    [10]

    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 Interdiscip. Mater. 1 88Google Scholar

    [11]

    Medlin D L, Yang N, Spataru C D, Hale L M, Mishin Y 2019 Nat. Commun. 10 1820Google Scholar

    [12]

    Cheng Y, Cojocaru-Mirédin O, Keutgen J, Yu Y, Küpers M, Schumacher M, Golub P, Raty J Y, Dronskowski R, Wuttig M 2019 Adv. Mater. 31 1904316Google Scholar

    [13]

    Shen J J, Hu L P, Zhu T J, Zhao X B 2011 Appl. Phys. Lett. 99 124102Google Scholar

    [14]

    Zhu T J, Hu L P, Zhao X B, He J 2016 Adv. Sci. 3 1600004Google Scholar

    [15]

    Horak J, Stary Z, Lošťák P, Pancíř J 1990 J. Phys. Chem. Solids 51 1353Google Scholar

    [16]

    Starý Z, Horak J, Stordeur M, Stölzer M 1988 J. Phys. Chem. Solids 49 29Google Scholar

    [17]

    Horak J, Čermák K, Koudelka L 1986 J. Phys. Chem. Solids 47 805Google Scholar

    [18]

    Miller G R, Li C Y 1965 J. Phys. Chem. Solids 26 173Google Scholar

    [19]

    Gobrecht H, Pantzer G, Boeters K E 1964 Z. Phys. 177 68Google Scholar

    [20]

    Offergeld G, Van Cakenberghe J 1959 J. Phys. Chem. Solids 11 310Google Scholar

    [21]

    鲁志强, 刘可可, 李强, 胡芹, 冯丽萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰 2023 无机材料学报 38 1331Google Scholar

    Lu Z Q, Liu K K, Li Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 J. Inorg. Mater. 38 1331Google Scholar

    [22]

    李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯丽萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰 2023 72 097101Google Scholar

    Li Q, Chen S, Liu K K, Lu Z Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 Acta Phys. Sin. 72 097101Google Scholar

    [23]

    Zhang Q, Cao F, Liu W, Lukas K, Yu B, Chen S, Opeil C, Broido D, Chen G, Ren Z 2012 J. Am. Chem. Soc. 134 10031Google Scholar

    [24]

    Mehta R J, Zhang Y L, Karthik C, Singh B, Siegel R W, Borca-Tasciuc T, Ramanath G 2012 Nat. Mater. 11 233Google Scholar

    [25]

    Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510Google Scholar

    [26]

    Pei Y Z, Heinz N A, LaLonde A, Snyder G J 2011 Energy Environ. Sci. 4 3640Google Scholar

    [27]

    Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 102111Google Scholar

    [28]

    Navratil J, Starý Z, Plechacek T 1996 Mater. Res. Bull. 31 1559Google Scholar

    [29]

    Shen J J, Zhu T J, Zhao X B, Zhang S N, Yang S H, Yin Z Z 2010 Energy Environ. Sci. 3 1519Google Scholar

    [30]

    Oh T S, Hyun D B, Kolomoets N V 2000 Scr. Mater. 42 849Google Scholar

    [31]

    Hao F, Qiu P, Tang Y, Bai S, Xing T, Chu H S, Zhang Q, Lu P, Zhang T, Ren D, Chen J, Shi X, Chen L 2016 Energy Environ. Sci. 9 3120Google Scholar

    [32]

    Hwang J Y, Kim J, Kim H S, Kim S I, Lee K H, Kim S W 2018 Adv. Energy Mater. 8 1800065Google Scholar

    [33]

    Qin B, Wang D, Liu X, Qin Y, Dong J F, Luo J, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [34]

    Su X L, Wei P, Li H, Liu W, Yan Y G, Li P, Su C Q, Xie C J, Zhao W Y, Zhai P C, Zhang Q J, Tang X F, Uher C 2017 Adv. Mater. 29 23Google Scholar

    [35]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [36]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [37]

    Kim H S, Gibbs Z M, Tang Y L, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [38]

    Witting I T, Ricci F, Chasapis T C, Hautier G, Snyder G J 2020 Research 2020 4361703Google Scholar

  • 图 1  (a) 区熔法制备Bi2–x SbxTe2.994Cl0.006和Bi1.8Sb0.2Te2.994–ySeyCl0.006样品粉末X射线衍射图谱; (b) Bi1.8Sb0.2Te2.694Se0.3Cl0.006样品垂直于提拉方向自由断裂截面的场发射扫描电子显微镜照片; (c) Bi1.8Sb0.2Te2.694Se0.3Cl0.006样品抛光表面背散射电子图像(单位原子百分比)以及对应区域Bi, Sb, Se和Te等元素的面分布图像

    Fig. 1.  (a) Powder XRD patterns of Bi2–x SbxTe2.994Cl0.006 and Bi1.8Sb0.2Te2.994–ySeyCl0.006 samples prepared by zone melting method; (b) field emission scanning electron microscope images of freshly fractured surfaces of the Bi1.8Sb0.2Te2.694Se0.3Cl0.006 sample measured perpendicular to the travel direction during zone melting; (c) backscattered electron image of polished surfaces for Bi1.8Sb0.2Te2.694Se0.3Cl0.006 sample and the corresponding elemental mapping images for Bi, Sb, Se and Te, respectively.

    图 2  Bi2–x SbxTe2.994Cl0.006和Bi1.8Sb0.2Te2.994–ySeyCl0.006样品的电输运性能 (a), (b) 电导率; (c), (d) Seebeck系数; (e), (f) 功率因子

    Fig. 2.  Temperature-dependent electronic transport properties for Bi2–x SbxTe2.994Cl0.006 and Bi1.8Sb0.2Te2.994–ySeyCl0.006 samples: (a), (b) Electrical conductivity; (c), (d) Seebeck coefficient; (e), (f) power factor.

    图 3  (a), (b) 室温载流子浓度及迁移率随Sb, Se含量的变化; (c) 室温下样品的塞贝克系数与载流子浓度的关系, 图中紫色实线、红色实线、黄色实线为不同态密度有效质量下基于单抛带模型计算的塞贝克系数与载流子浓度关系曲线

    Fig. 3.  (a), (b) Hall carrier mobility and concentration change with respect to the Sb, Se content; (c) Seebeck coefficients as a function of the charge carrier concentration at 300 K, where the colored dash lines are Pisarenko plots based on the single parabolic band model with different effective mass.

    图 4  Bi2Te3基化合物中不同点缺陷形成能 (a) Bi2–x SbxTe3固溶体; (b) Bi2–x SbxTe3–ySey固溶体

    Fig. 4.  Theoretically calculated formation energies of different point defects in (a) Bi2–x SbxTe3 and (b) Bi2–x SbxTe3–ySey solid solution as a function of the Fermi level under the Te-poor condition.

    图 5  在200 K下, 不同样品(a) 两种载流子浓度及其比值随组分变化情况, 以及(b) 两种载流子迁移率及其比值随组分变化情况; (c) Bi2–x SbxTe3–ySey固溶体缺陷演化过程示意图

    Fig. 5.  Composition dependence of (a) ne, nh, and nh/ne, (b) μe, μh, and μe/μh of different samples at 200 K. (c) Defect evolution process for Bi2–x SbxTe3–ySey solid solution.

    图 6  Bi1.8Sb0.2Te2.994–ySeyCl0.006样品的(a) 总热导率κ、(b) 热导率κκe和(c) 无量纲热电优值ZT随温度的变化

    Fig. 6.  Temperature-dependent (a) Total thermal conductivity, (b) thermal conductivity κκe, (c) ZT for Bi1.8Sb0.2Te2.994–ySeyCl0.006 samples.

    表 1  Bi2–x SbxTe2.994Cl0.006和Bi1.8Sb0.2Te2.994–ySeyCl0.006样品的室温物理性能参数

    Table 1.  Room-temperature physic properties of Bi2–x SbxTe2.994Cl0.006 and Bi1.8Sb0.2Te2.994–ySeyCl0.006 samples.

    Samples σ/(104 S·m–1) S/(μV·K–1) n/(1019 cm–3) μ/(cm2·V–1·s–1) κ/(W·m–1·K–1) m*/m0
    x = 0 11.2 –214.0 1.06 568 1.84 0.51
    x = 0.05 11.0 –209.6 0.91 750 1.75 0.45
    x = 0.10 9.94 –216.4 0.88 706 1.72 0.45
    x = 0.15 9.16 –223.2 0.82 698 1.58 0.45
    x = 0.20 5.79 –210.0 0.64 661 1.66 0.36
    y = 0.05 8.97 –223.1 1.16 481 1.42 0.57
    y = 0.10 8.46 –223.6 1.95 271 1.41 0.80
    y = 0.15 9.94 –209.9 2.35 264 1.35 0.86
    y = 0.20 8.82 –215.8 2.57 214 1.45 0.94
    y = 0.25 8.68 –217.4 1.92 282 1.33 0.66
    y = 0.30 9.15 –207.2 1.80 318 1.30 0.70
    下载: 导出CSV
    Baidu
  • [1]

    Liu S X, Tian J L, Wu S, Zhang W, Luo M Y 2022 Nano Energy 93 106812Google Scholar

    [2]

    Hu B X, Shi X L, Zou J, Chen Z G 2022 Chem. Eng. J. 437 135268Google Scholar

    [3]

    Chen W Y, Shi X L, Zou J, Chen Z G 2022 Mater. Sci. Eng., R 151 100700Google Scholar

    [4]

    Han C G, Qian X, Li Q K, Deng B, Zhu Y B, Han Z J, Zhang W Q, Wang W C, Feng S P, Chen G, Liu W S 2020 Science 368 1091Google Scholar

    [5]

    Zhang Q, Yuan M, Pang K, Zhang Y, Wang R, Tan X, Wu G, Hu H, Wu J, Sun P, Liu G Q, Jiang J 2023 Adv. Mater. 35 2300338Google Scholar

    [6]

    Xie H Y, Hao S Q, Bao J K, Slade T J, Snyder G J, Wolverton C, Kanatzidis M G 2020 J. Am. Chem. Soc. 142 9553Google Scholar

    [7]

    Xie H, Zhao L D, Kanatzidis M G 2024 Interdiscip. Mater. 1 24Google Scholar

    [8]

    Liu Z, Hong T, Xu L, Wang S, Gao X, Chang C, Ding X, Xiao Y, Zhao L D 2022 Interdiscip. Mater. 2 161Google Scholar

    [9]

    Suh J, Yu K M, Fu D Y, Liu X Y, Yang F, Fan J, Smith D J, Zhang Y H, Furdyna J K, Dames C, Walukiewicz W, Wu J Q 2015 Adv. Mater. 27 3681Google Scholar

    [10]

    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 Interdiscip. Mater. 1 88Google Scholar

    [11]

    Medlin D L, Yang N, Spataru C D, Hale L M, Mishin Y 2019 Nat. Commun. 10 1820Google Scholar

    [12]

    Cheng Y, Cojocaru-Mirédin O, Keutgen J, Yu Y, Küpers M, Schumacher M, Golub P, Raty J Y, Dronskowski R, Wuttig M 2019 Adv. Mater. 31 1904316Google Scholar

    [13]

    Shen J J, Hu L P, Zhu T J, Zhao X B 2011 Appl. Phys. Lett. 99 124102Google Scholar

    [14]

    Zhu T J, Hu L P, Zhao X B, He J 2016 Adv. Sci. 3 1600004Google Scholar

    [15]

    Horak J, Stary Z, Lošťák P, Pancíř J 1990 J. Phys. Chem. Solids 51 1353Google Scholar

    [16]

    Starý Z, Horak J, Stordeur M, Stölzer M 1988 J. Phys. Chem. Solids 49 29Google Scholar

    [17]

    Horak J, Čermák K, Koudelka L 1986 J. Phys. Chem. Solids 47 805Google Scholar

    [18]

    Miller G R, Li C Y 1965 J. Phys. Chem. Solids 26 173Google Scholar

    [19]

    Gobrecht H, Pantzer G, Boeters K E 1964 Z. Phys. 177 68Google Scholar

    [20]

    Offergeld G, Van Cakenberghe J 1959 J. Phys. Chem. Solids 11 310Google Scholar

    [21]

    鲁志强, 刘可可, 李强, 胡芹, 冯丽萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰 2023 无机材料学报 38 1331Google Scholar

    Lu Z Q, Liu K K, Li Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 J. Inorg. Mater. 38 1331Google Scholar

    [22]

    李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯丽萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰 2023 72 097101Google Scholar

    Li Q, Chen S, Liu K K, Lu Z Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 Acta Phys. Sin. 72 097101Google Scholar

    [23]

    Zhang Q, Cao F, Liu W, Lukas K, Yu B, Chen S, Opeil C, Broido D, Chen G, Ren Z 2012 J. Am. Chem. Soc. 134 10031Google Scholar

    [24]

    Mehta R J, Zhang Y L, Karthik C, Singh B, Siegel R W, Borca-Tasciuc T, Ramanath G 2012 Nat. Mater. 11 233Google Scholar

    [25]

    Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510Google Scholar

    [26]

    Pei Y Z, Heinz N A, LaLonde A, Snyder G J 2011 Energy Environ. Sci. 4 3640Google Scholar

    [27]

    Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 102111Google Scholar

    [28]

    Navratil J, Starý Z, Plechacek T 1996 Mater. Res. Bull. 31 1559Google Scholar

    [29]

    Shen J J, Zhu T J, Zhao X B, Zhang S N, Yang S H, Yin Z Z 2010 Energy Environ. Sci. 3 1519Google Scholar

    [30]

    Oh T S, Hyun D B, Kolomoets N V 2000 Scr. Mater. 42 849Google Scholar

    [31]

    Hao F, Qiu P, Tang Y, Bai S, Xing T, Chu H S, Zhang Q, Lu P, Zhang T, Ren D, Chen J, Shi X, Chen L 2016 Energy Environ. Sci. 9 3120Google Scholar

    [32]

    Hwang J Y, Kim J, Kim H S, Kim S I, Lee K H, Kim S W 2018 Adv. Energy Mater. 8 1800065Google Scholar

    [33]

    Qin B, Wang D, Liu X, Qin Y, Dong J F, Luo J, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [34]

    Su X L, Wei P, Li H, Liu W, Yan Y G, Li P, Su C Q, Xie C J, Zhao W Y, Zhai P C, Zhang Q J, Tang X F, Uher C 2017 Adv. Mater. 29 23Google Scholar

    [35]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [36]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [37]

    Kim H S, Gibbs Z M, Tang Y L, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [38]

    Witting I T, Ricci F, Chasapis T C, Hautier G, Snyder G J 2020 Research 2020 4361703Google Scholar

  • [1] 李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. n型Bi2Te3基化合物的类施主效应和热电性能.  , 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [2] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能.  , 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [3] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能.  , 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [4] 訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰. AgyIn3.33–y/3Se5化合物结构和热电性能.  , 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [5] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究.  , 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [6] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能.  , 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [7] 范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰. In1+xTe化合物的结构及热电性能研究.  , 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [8] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究.  , 2021, (): . doi: 10.7498/aps.70.20211843
    [9] 余波. Ag掺杂对p型Pb0.5Sn0.5Te化合物热电性能的影响规律.  , 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
    [10] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能.  , 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [11] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能.  , 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [12] 苏贤礼, 唐新峰, 李涵. 熔体旋甩工艺对n型InSb化合物的微结构及热电性能的影响.  , 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [13] 蒋明波, 吴智雄, 周敏, 黄荣进, 李来风. Bi2Te3 合金低温热电性能及冷能发电研究.  , 2010, 59(10): 7314-7319. doi: 10.7498/aps.59.7314
    [14] 罗文辉, 李涵, 林泽冰, 唐新峰. Si含量对高锰硅化合物相组成及热电性能的影响研究.  , 2010, 59(12): 8783-8788. doi: 10.7498/aps.59.8783
    [15] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能.  , 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [16] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能.  , 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [17] 刘玮书, 张波萍, 李敬锋, 张海龙, 赵立东. Co1-xNixSb3-ySey热电输运中晶界和点缺陷的耦合散射效应.  , 2008, 57(6): 3791-3797. doi: 10.7498/aps.57.3791
    [18] 刘海君, 鄢永高, 唐新峰, 尹玲玲, 张清杰. p型Ag0.5(Pb8-xSnx)In0.5Te10化合物的制备及其热电性能.  , 2007, 56(12): 7309-7314. doi: 10.7498/aps.56.7309
    [19] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响.  , 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
    [20] 唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章. n型BayNixCo4-xSb12化合物的热电性能.  , 2002, 51(12): 2823-2828. doi: 10.7498/aps.51.2823
计量
  • 文章访问数:  1715
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-15
  • 修回日期:  2024-03-01
  • 上网日期:  2024-03-12
  • 刊出日期:  2024-05-05

/

返回文章
返回
Baidu
map