搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HFE-7100平行微通道流动沸腾实验

解奕晨 庄晓如 岳思君 李翔 余鹏 鲁春

引用本文:
Citation:

HFE-7100平行微通道流动沸腾实验

解奕晨, 庄晓如, 岳思君, 李翔, 余鹏, 鲁春

Experimental study on flow boiling of HFE-7100 in rectangular parallel microchannel

Xie Yi-Chen, Zhuang Xiao-Ru, Yue Si-Jun, Li Xiang, Yu Peng, Lu Chun
PDF
HTML
导出引用
  • 微通道流动沸腾冷却技术兼具相变潜热和微尺度效应的诸多优点, 是解决微电子器件热致失效问题的重要方法之一. HFE-7100是一种安全环保的电子氟化液, 特别适用于微电子器件的冷却. 本文在水力直径为0.5 mm的矩形平行微通道内, 对HFE-7100的流动沸腾传热和两相流动特性进行了实验研究, 测量范围为常压下质量流率88.9—277.8 kg·m–2·s–1、入口过冷度20.5—35.5 ℃和有效热流密度12—279 kW·m–2. 本文分析了质量流率、入口过冷度、有效热流密度和干度对传热系数和压降的影响, 发现在较低的入口过冷度下HFE-7100出现了沸腾迟滞现象, 且增大入口过冷度和质量流率会延缓沸腾起始点的发生, 且会提高传热系数和临界热流密度. 两相压降受有效热流密度影响较大, 且在定干度下不同质量流率的两相压降在塞状流和环状流阶段有明显差异. 同时, 通过观测两相流型, 对流动沸腾传热现象进行了分析. 本文还将两相压降实验数据与文献关联式预测值进行了对比, 与Lockhart提出的关联式预测值偏差为19.6%. 本文研究结果可为微电子器件散热设备的优化设计提供理论指导: 以HFE-7100作为传热工质并将微通道流动沸腾冷却技术应用于微电子器件散热设备, 可以提高设备的稳定性和可靠性; 在不同热流密度的设备中通过控制入口过冷度和质量流率可有效地提升其散热性能; 采用Lockhart提出的两相压降关联式可预测散热设备所需的泵功.
    With the rapid development of microelectronic technology, the integration and power of chip are increasing. Heat dissipation with high heat flux in limited space has become a bottleneck restricting the efficient and stable operation of the microelectronic devices. Flow boiling in microchannel heat sink is one of the most essential candidates for solving this problem. It has been shown that remarkable high heat transfer performance can be achieved through the liquid-to-vapor change process, which can dissipate a large amount of heat from a small area. In addition, dielectric fluorinated fluids, such as HFE-7100, HFE-7200, and FC-72, are especially suitable for cooling microelectronic devices, because of their excellent safety and environmental characteristics. However, dielectric fluorinated fluids have poorer thermophysical properties than water. Thus, the flow boiling heat transfer characteristics of dielectric fluorinated fluids can be different from those of water. In this work, flow boiling heat transfer and flow characteristics of HFE-7100 in a rectangular parallel microchannel are investigated. The tests are conducted at mass fluxes from 88.9 to 277.8 kg·m–2·s–1, inlet subcooling temperature from 20.5 to 35.5 ℃ and effective heat flux from 12 to 279 kW·m–2 at nearly atmospheric pressure. The effects of mass flux, inlet subcooling temperature, effective heat flux and vapor quality are examined and analyzed. Additionally, flow visualization is also obtained to explain the heat transfer mechanism during the experiments. The results show that the boiling hysteresis is observed for HFE-7100 at low inlet subcooling temperature, and the increasing inlet subcooling temperature and mass flux can delay the onset of nucleate boiling. The increases of inlet subcooling temperature and mass flux can enhance the two-phase heat transfer coefficient. And the two-phase heat transfer coefficient is significantly dependent on the inlet subcooling temperature in the slug flow, while it is significantly dependent on the mass flux in the annular flow. The two-phase pressure drop increases drastically as the effective heat flux increases. And the two-phase pressure drops with different mass fluxes at constant vapor quality are obviously different between the slug flow and the annular flow. Furthermore, the experimental data are compared with four predicted values of the literature. It is found that the correlation of Lockhart has the best statistical agreement with an MAE of 19.6% and over 85% of points in the deviation bandwidth of ±30%. The results in this paper give valuable theoretical guidance for designing and optimizing heat dissipation equipment for microelectronic devices. By utilizing HFE-7100 as the coolant and microchannel heat sinks in flow boiling, it is possible to enhance the stability and reliability of the electronic devices. Additionally, the heat transfer performance associated with different heat fluxes can be improved by regulating the inlet subcooling and mass flow rate. Finally, the two-phase pressure drop correlation proposed by Lockhart can be employed to predict the pump power for heat dissipation equipment.
      通信作者: 庄晓如, zhuangxr@szpt.edu.cn ; 余鹏, yup6@sustech.edu.cn
    • 基金项目: 广东省基础与应用基础研究基金(批准号: 2020A1515110257, 2022A1515110174)资助的课题.
      Corresponding author: Zhuang Xiao-Ru, zhuangxr@szpt.edu.cn ; Yu Peng, yup6@sustech.edu.cn
    • Funds: Project supported by the Guangdong Provincial Basic and Applied Basic Research Foundation, China (Grant Nos. 2020A1515110257, 2022A1515110174).
    [1]

    Karayiannis T G, Mahmoud M M 2017 Appl. Therm. Eng. 115 1372Google Scholar

    [2]

    Manetti L L, Ribatski G, de Souza R R, Cardoso E M 2020 Exp. Therm. Fluid Sci. 113 110025Google Scholar

    [3]

    Harirchian T, Garimella S V 2009 Int. J. Multiphase Flow 35 349Google Scholar

    [4]

    Asrar P, Ghiaasiaan S M, Joshi Y K. 2021 J. Heat Transfer 143 023001Google Scholar

    [5]

    杨晓强, 秋穗正, 贾晓鸿, 尹海峰, 贾斗南, 卢冬华 2007 核动力工程 28 38Google Scholar

    Yang X Q, Qiu S Z, Jia X H, Yin H F, Jia D N, Lu D H 2007 Nucl. Power Eng. 28 38Google Scholar

    [6]

    Wang Y, Sefiane K 2012 Int. J. Heat Mass Transfer 55 2235Google Scholar

    [7]

    Al-Zaidi A H, Mahmoud M M, Karayiannis T G 2019 Int. J. Heat Mass Transfer 140 100Google Scholar

    [8]

    Al-Zaidi A H, Mahmoud M M, Karayiannis T G 2021 Int. J. Heat Mass Transfer 164 120587Google Scholar

    [9]

    Cheng X, Wu H 2023 Exp. Therm. Fluid Sci. 142 110805Google Scholar

    [10]

    Yang K S, Jeng Y R, Huang C M, Wang C C 2011 Heat Transfer Eng. 32 697Google Scholar

    [11]

    Tuo H, Hrnjak P 2013 Int. J. Refrig. 36 1263Google Scholar

    [12]

    Rausch M H, Kretschmer L, Will S, Leipertz A, Froba A P 2015 J. Chem. Eng. Data 60 3759Google Scholar

    [13]

    Liang G, Mudawar I 2020 Int. J. Heat Mass Transfer 146 118864Google Scholar

    [14]

    Cui P, Liu Z 2021 Int. J. Heat Mass Transfer 175 121387Google Scholar

    [15]

    Feng S, Yan Y, Lai C 2022 Int. J. Heat Mass Transfer 186 122468Google Scholar

    [16]

    Zhuang X R, Yu P, Li X, Deng Q Y 2020 PRC Patent CN202122664314 [2021-11-02

    [17]

    Abu-Eishah S I 2001 Int. J. Thermophys. 22 1855Google Scholar

    [18]

    Machrafi H, Sadoun N, Rednikov A, Dehaeck S, Dauby P C, Colinet P 2013 Microgravity Sci. Technol. 25 251Google Scholar

    [19]

    Nassar M, Vazquez P, Chauris N, Daaboul M B, Louste C 2020 IEEE Trans. Ind. Appl. 56 4193Google Scholar

    [20]

    Qu W, Siu-Ho A 2008 J. Heat Transfer 130 122402Google Scholar

    [21]

    Blevins R D 1984 Applied Fluid Dynamics Handbook (New York: Van Nostrand Reinhold) pp12–20

    [22]

    Taylor B N, Kuyatt C E 1994 Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (Gaithersburg: Department of Commerce, Technology Administration, National Institute of Standards and Technology) pp11–20

    [23]

    Žukauskas A 1972 Adv. Heat Transfer 8 93

    [24]

    Chang J Y, Prasher R, Chau D, Myers A, He D 2005 International Electronic Packaging Technical Conference and Exhibition San Francisco, California, USA, July 17–22, 2005 p183

    [25]

    Brunschwiler T, Michel B, Rothuizen H, Kloter U, Wunderle B, Oppermann H, Reichl H 2009 Microsyst. Technol. 15 57Google Scholar

    [26]

    Xu F, Wu H 2018 J. Heat Transfer 140 122401Google Scholar

    [27]

    Kong L J, Liu Z G, Jia L, Lv M M, Liu Y 2020 Exp. Therm. Fluid Sci. 115 109946Google Scholar

    [28]

    Ming H S, Ma J, Bu X W 1993 Int. J. Heat Mass Transfer 36 4461Google Scholar

    [29]

    Zhuang X R, Xie Y C, Li X, Yue S J, Wang H T, Wang H D, Yu P 2023 Appl. Therm. Eng. 225 120180Google Scholar

    [30]

    Lockhart W R 1949 Chem. Eng. Prog. 45 39

    [31]

    Mudawar I, Qu W 2003 Int. J. Heat Mass Transfer 46 2737Google Scholar

    [32]

    Lee H J, Lee S Y 2001 Int. J. Multiphase Flow 27 2043Google Scholar

    [33]

    Krishnamurthy S, Peles Y 2007 Phys. Fluids 19 043302Google Scholar

  • 图 1  微通道流动沸腾实验系统示意图

    Fig. 1.  Schematic view of the experimental apparatus.

    图 2  微通道测试段结构图 (a) 紫铜热沉热电偶排布; (b) 测试段组装示意图; (c) 平行微通道结构尺寸

    Fig. 2.  Schematic view of the test section: (a) Thermocouple arrangement on the copper heat sink; (b) assembly drawing; (c) dimensional drawing of the microchannels.

    图 3  单相 (a) Nu-Re和 (b) f-Re 的验证结果

    Fig. 3.  Verifications of single-phase (a) Nu-Re and (b) f-Re

    图 4  不同(a)入口过冷度和(b)质量流率下HFE-7100的沸腾传热曲线

    Fig. 4.  Boiling heat transfer curve of HFE-7100 under different operating conditions: (a) Inlet subcooling temperature; (b) mass flux

    图 5  G = 155.6 kg·m–2·s–1和∆Tsub = 25.5 ℃下, HFE-7100的沸腾两相流动形态 (a) 泡状流 (qeff = 90.6 kW·m–2); (b) 塞状流 (qeff = 110.6 kW·m–2); (c) 环状流 (qeff = 202.3 kW·m–2); (d) 局部烧干状态 (qeff = 263.4 kW·m–2)

    Fig. 5.  Boiling two-phase flow patterns of HFE-7100 at G = 155.6 kg·m–2·s–1 and ∆Tsub = 25.5℃: (a) Bubbly flow (qeff = 90.6 kW·m–2); (b) slug flow (qeff = 110.6 kW·m–2); (c) annular flow (qeff = 202.3 kW·m–2); (d) local drying state (qeff = 263.4 kW·m–2).

    图 6  不同(a)入口过冷度和(b)质量流率下HFE-7100流动沸腾传热系数随有效热流密度的变化

    Fig. 6.  The variation of flow boiling heat transfer coefficient of HFE-7100 with respect to the effective heat flux density under different operating conditions: (a) Inlet subcooling temperature; (b) mass flux.

    图 7  不同(a)入口过冷度和(b) 质量流率下HFE-7100流动沸腾传热系数随干度的变化

    Fig. 7.  The variation of flow boiling heat transfer coefficient of HFE-7100 with dryness under different operating conditions: (a) Inlet subcooling temperature; (b) mass flux.

    图 8  不同(a)入口过冷度和(b)质量流率下HFE-7100流动沸腾沿程压降随有效热流密度的变化

    Fig. 8.  The variation of flow boiling heat transfer pressure drop of HFE-7100 with effective heat flux density under different operating conditions: (a) Inlet subcooling temperature; (b) mass flux.

    图 9  不同(a)入口过冷度和(b)质量流率下HFE-7100流动沸腾沿程压降随干度的变化

    Fig. 9.  The variation of flow boiling heat transfer pressure drop of HFE-7100 with dryness under different operating conditions: (a) Inlet subcooling temperature; (b) mass flux.

    图 10  平行微通道两相压降实验结果与文献关联式预测值对比

    Fig. 10.  Comparison of experimental results of two-phase pressure drop in the microchannel with predicted values from literature correlations.

    表 1  测量参数的不确定度

    Table 1.  Uncertainty of measurement parameters.

    测量参数 测试设备 测量范围 不确定度
    温度 Omega T/K 0—300 ℃ ±0.2 ℃
    压力 Star CYYZ11 0—0.4 MPa ±0.1%
    压差 Star CCY15 0—20 kPa ±0.25%
    质量流量 Bronkhorst MINI CORI-FLOW M14 0.3—15 kg·h–1 ±0.2%
    长度 LINKS游标卡尺 0—150 mm ±0.01 mm
    两相热流密度 2.2%—9.1%
    两相传热系数 2.5%—9.7%
    干度 1.7%—6.3%
    下载: 导出CSV

    表 2  两相压降关联式计算结果与实验结果的对比

    Table 2.  Comparison between the calculated results of the two-phase pressure drop correlation and the experimental results

    文献 两相压降关联式 MAE/% δ/%
    [30] $ {X_{vv}} = {\left( {\dfrac{{{\mu _{{\text{l, out, t}}}}}}{{{\mu _{{\text{g, out, t}}}}}}} \right)^{0.274}}{\left( {\dfrac{{1 - {x_{{\text{out }}}}}}{{{x_{{\text{out }}}}}}} \right)^{0.727}}{\left( {\dfrac{{{\text{ }}R{e_{{\text{g, out, t}}}}}}{{R{e_{{\text{l, out, t}}}}}}} \right)^{0.5}} $, ${f_{\text{l}}} = \dfrac{{20.09}}{{Re_{{\text{l, out}}\;}^{0.547}}}$ 19.6 85.5
    $\phi _{\text{f}}^2 = 1 + \dfrac{5}{{{X_{vv}}}} + \dfrac{1}{{X_{vv}^2}}$, $\Delta {p_{{\text{ch, cal}}}} = \dfrac{{2{f_{\text{l}}}{G^2}\phi _{\text{f}}^2\left( {L - {S_{\text{L}}}} \right)}}{{3{\rho _{\text{l}}}{D_{{\text{ch}}}}}}\left( {x_{{\text{out}}\;}^2 - 3{x_{{\text{out}}\;}} + 3} \right)$
    [31] $ {X_{vv}} = {\left( {\dfrac{{{\mu _{{\text{l, out, t}}}}}}{{{\mu _{{\text{g, out, t}}}}}}} \right)^{0.274}}{\left( {\dfrac{{1 - {x_{{\text{out }}}}}}{{{x_{{\text{out }}}}}}} \right)^{0.727}}{\left( {\dfrac{{{\text{ }}R{e_{{\text{g, out, t}}}}}}{{R{e_{{\text{l, out, t}}}}}}} \right)^{0.5}} $, ${f_{\text{l}}} = \dfrac{{20.09}}{{Re_{{\text{l, out, t}}}^{{0}{.547}}}}$ 20.6 85.5
    ${C_{\text{M}}} = 21\left( {1 - {{\text{e}}^{ - 319{D_{{\text{fin}}}}}}} \right)\left( {0.00418 G + 0.0613} \right)$, $\phi _{\text{f}}^2 = 1 + \dfrac{{{C_{\text{M}}}}}{{{X_{vv}}}} + \dfrac{1}{{X_{vv}^2}}$
    $\Delta {p_{{\text{ch, cal}}}} = \dfrac{{2{f_{\text{l}}}{G^2}\phi _{\text{f}}^2\left( {L - {S_{\text{L}}}} \right)}}{{3{\rho _{\text{l}}}{D_{{\text{ch}}}}}}\left( {x_{{\text{out}}\;}^2 - 3{x_{{\text{out}}\;}} + 3} \right)$
    [32] $ {X_{vv}} = {\left( {\dfrac{{{\mu _{{\text{l, out, t}}}}}}{{{\mu _{{\text{g, out, t}}}}}}} \right)^{0.274}}{\left( {\dfrac{{1 - {x_{{\text{out }}}}}}{{{x_{{\text{out }}}}}}} \right)^{0.727}}{\left( {\dfrac{{{\text{ }}R{e_{{\text{g, out, t}}}}}}{{R{e_{{\text{l, out, t}}}}}}} \right)^{0.5}} $, ${f_{\text{l}}} = \dfrac{{20.09}}{{Re_{{\text{l, out, t}}}^{{0}{.547}}}}$ 27.8 63.6
    ${C_{\text{L}}} = 2566{G^{0.5466}}D_{{\text{ch}}}^{0.8819}\left( {1 - {{\rm e} ^{ - 319{D_{{\text{ch}}}}}}} \right)$, $\phi _{\text{f}}^2 = 1 + \dfrac{{{C_{\text{L}}}}}{{{X_{vv}}}} + \dfrac{1}{{X_{vv}^2}}$
    $\Delta {p_{{\text{ch, cal}}}} = \dfrac{{2{f_{\text{l}}}{G^2}\phi _{\text{f}}^2\left( {L - {S_{\text{L}}}} \right)}}{{3{\rho _{\text{l}}}{D_{{\text{ch}}}}}}\left( {x_{{\text{out}}\;}^2 - 3{x_{{\text{out}}\;}} + 3} \right)$
    [33] $ {X_{vv}} = {\left( {\dfrac{{{\mu _{{\text{l, out, t}}}}}}{{{\mu _{{\text{g, out, t}}}}}}} \right)^{0.274}}{\left( {\dfrac{{1 - {x_{{\text{out }}}}}}{{{x_{{\text{out }}}}}}} \right)^{0.727}}{\left( {\dfrac{{{\text{ }}R{e_{{\text{g, out, t}}}}}}{{R{e_{{\text{l, out, t}}}}}}} \right)^{0.5}} $, ${f_{\text{l}}} = \dfrac{{20.09}}{{Re_{{\text{l, out, t}}}^{0.547}}}$ 25.5 74.5
    ${C_{\text{K}}} = \dfrac{{0.0358}}{{Re_{{\text{l, out, t}}}^{{0}{.547}}}}$, $\phi _{\text{f}}^2 = 1 + \dfrac{{{C_{\text{K}}}}}{{{X_{vv}}}} + \dfrac{1}{{X_{vv}^2}}$
    $\Delta {p_{{\text{ch, cal}}}} = \dfrac{{2{f_{\text{l}}}{G^2}\phi _{\text{f}}^2\left( {L - {S_{\text{L}}}} \right)}}{{3{\rho _{\text{l}}}{D_{{\text{ch}}}}}}\left( {x_{{\text{out}}\;}^2 - 3{x_{{\text{out}}\;}} + 3} \right)$
    下载: 导出CSV
    Baidu
  • [1]

    Karayiannis T G, Mahmoud M M 2017 Appl. Therm. Eng. 115 1372Google Scholar

    [2]

    Manetti L L, Ribatski G, de Souza R R, Cardoso E M 2020 Exp. Therm. Fluid Sci. 113 110025Google Scholar

    [3]

    Harirchian T, Garimella S V 2009 Int. J. Multiphase Flow 35 349Google Scholar

    [4]

    Asrar P, Ghiaasiaan S M, Joshi Y K. 2021 J. Heat Transfer 143 023001Google Scholar

    [5]

    杨晓强, 秋穗正, 贾晓鸿, 尹海峰, 贾斗南, 卢冬华 2007 核动力工程 28 38Google Scholar

    Yang X Q, Qiu S Z, Jia X H, Yin H F, Jia D N, Lu D H 2007 Nucl. Power Eng. 28 38Google Scholar

    [6]

    Wang Y, Sefiane K 2012 Int. J. Heat Mass Transfer 55 2235Google Scholar

    [7]

    Al-Zaidi A H, Mahmoud M M, Karayiannis T G 2019 Int. J. Heat Mass Transfer 140 100Google Scholar

    [8]

    Al-Zaidi A H, Mahmoud M M, Karayiannis T G 2021 Int. J. Heat Mass Transfer 164 120587Google Scholar

    [9]

    Cheng X, Wu H 2023 Exp. Therm. Fluid Sci. 142 110805Google Scholar

    [10]

    Yang K S, Jeng Y R, Huang C M, Wang C C 2011 Heat Transfer Eng. 32 697Google Scholar

    [11]

    Tuo H, Hrnjak P 2013 Int. J. Refrig. 36 1263Google Scholar

    [12]

    Rausch M H, Kretschmer L, Will S, Leipertz A, Froba A P 2015 J. Chem. Eng. Data 60 3759Google Scholar

    [13]

    Liang G, Mudawar I 2020 Int. J. Heat Mass Transfer 146 118864Google Scholar

    [14]

    Cui P, Liu Z 2021 Int. J. Heat Mass Transfer 175 121387Google Scholar

    [15]

    Feng S, Yan Y, Lai C 2022 Int. J. Heat Mass Transfer 186 122468Google Scholar

    [16]

    Zhuang X R, Yu P, Li X, Deng Q Y 2020 PRC Patent CN202122664314 [2021-11-02

    [17]

    Abu-Eishah S I 2001 Int. J. Thermophys. 22 1855Google Scholar

    [18]

    Machrafi H, Sadoun N, Rednikov A, Dehaeck S, Dauby P C, Colinet P 2013 Microgravity Sci. Technol. 25 251Google Scholar

    [19]

    Nassar M, Vazquez P, Chauris N, Daaboul M B, Louste C 2020 IEEE Trans. Ind. Appl. 56 4193Google Scholar

    [20]

    Qu W, Siu-Ho A 2008 J. Heat Transfer 130 122402Google Scholar

    [21]

    Blevins R D 1984 Applied Fluid Dynamics Handbook (New York: Van Nostrand Reinhold) pp12–20

    [22]

    Taylor B N, Kuyatt C E 1994 Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (Gaithersburg: Department of Commerce, Technology Administration, National Institute of Standards and Technology) pp11–20

    [23]

    Žukauskas A 1972 Adv. Heat Transfer 8 93

    [24]

    Chang J Y, Prasher R, Chau D, Myers A, He D 2005 International Electronic Packaging Technical Conference and Exhibition San Francisco, California, USA, July 17–22, 2005 p183

    [25]

    Brunschwiler T, Michel B, Rothuizen H, Kloter U, Wunderle B, Oppermann H, Reichl H 2009 Microsyst. Technol. 15 57Google Scholar

    [26]

    Xu F, Wu H 2018 J. Heat Transfer 140 122401Google Scholar

    [27]

    Kong L J, Liu Z G, Jia L, Lv M M, Liu Y 2020 Exp. Therm. Fluid Sci. 115 109946Google Scholar

    [28]

    Ming H S, Ma J, Bu X W 1993 Int. J. Heat Mass Transfer 36 4461Google Scholar

    [29]

    Zhuang X R, Xie Y C, Li X, Yue S J, Wang H T, Wang H D, Yu P 2023 Appl. Therm. Eng. 225 120180Google Scholar

    [30]

    Lockhart W R 1949 Chem. Eng. Prog. 45 39

    [31]

    Mudawar I, Qu W 2003 Int. J. Heat Mass Transfer 46 2737Google Scholar

    [32]

    Lee H J, Lee S Y 2001 Int. J. Multiphase Flow 27 2043Google Scholar

    [33]

    Krishnamurthy S, Peles Y 2007 Phys. Fluids 19 043302Google Scholar

  • [1] 王晗, 袁礼, 王超, 王如志. 周期性分流微通道的结构设计及散热性能.  , 2021, 70(10): 104401. doi: 10.7498/aps.70.20201802
    [2] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟.  , 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [3] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展.  , 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [4] 闫晨帅, 徐进良. 超临界压力CO2在水平圆管内流动传热数值分析.  , 2020, 69(4): 044401. doi: 10.7498/aps.69.20191513
    [5] 娄钦, 李涛, 杨茉. 复杂微通道内气泡在浮力作用下上升行为的格子Boltzmann方法模拟.  , 2018, 67(23): 234701. doi: 10.7498/aps.67.20181311
    [6] 王胜, 徐进良, 张龙艳. 非对称纳米通道内流体流动与传热的分子动力学.  , 2017, 66(20): 204704. doi: 10.7498/aps.66.204704
    [7] 胡海豹, 何强, 余思潇, 张招柱, 宋东. 低温光滑壁面上水滴撞击结冰行为.  , 2016, 65(10): 104703. doi: 10.7498/aps.65.104703
    [8] 顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞. 层状二硫化钼研究进展.  , 2016, 65(1): 018102. doi: 10.7498/aps.65.018102
    [9] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟.  , 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [10] 李大树, 仇性启, 郑志伟. 液滴碰撞液膜润湿壁面空气夹带数值分析.  , 2015, 64(22): 224704. doi: 10.7498/aps.64.224704
    [11] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率.  , 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [12] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究.  , 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [13] 张程宾, 许兆林, 陈永平. 粗糙纳通道内流体流动与传热的分子动力学模拟研究.  , 2014, 63(21): 214706. doi: 10.7498/aps.63.214706
    [14] 李日, 王健, 周黎明, 潘红. 基于体积平均法模拟铸锭凝固过程的可靠性分析.  , 2014, 63(12): 128103. doi: 10.7498/aps.63.128103
    [15] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性.  , 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [16] 闫寒, 张文明, 胡开明, 刘岩, 孟光. 随机粗糙微通道内流动特性研究.  , 2013, 62(17): 174701. doi: 10.7498/aps.62.174701
    [17] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究.  , 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [18] 陈文豪, 杜磊, 庄奕琪, 包军林, 何亮, 陈华, 孙鹏, 王婷岚. 电子器件散粒噪声测试方法研究.  , 2011, 60(5): 050704. doi: 10.7498/aps.60.050704
    [19] 肖波齐, 陈玲霞, 蒋国平, 饶连周, 王宗篪, 魏茂金. 池沸腾传热的数学分析.  , 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [20] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响.  , 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
计量
  • 文章访问数:  3172
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-03
  • 修回日期:  2023-10-30
  • 上网日期:  2023-11-29
  • 刊出日期:  2024-03-05

/

返回文章
返回
Baidu
map