搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压氦气预电离直流辉光放电二维仿真研究

刘在浩 刘颖华 许博坪 尹培琪 李静 王屹山 赵卫 段忆翔 汤洁

引用本文:
Citation:

大气压氦气预电离直流辉光放电二维仿真研究

刘在浩, 刘颖华, 许博坪, 尹培琪, 李静, 王屹山, 赵卫, 段忆翔, 汤洁

Two-dimensional numerical simulation of pre-ionized direct-current glow discharge in atmospheric helium

Liu Zai-Hao, Liu Ying-Hua, Xu Bo-Ping, Yin Pei-Qi, Li Jing, Wang Yi-Shan, Zhao Wei, Duan Yi-Xiang, Tang Jie
PDF
HTML
导出引用
  • 基于二维流体模型, 研究了大气压下预电离对短间隙和长间隙直流辉光放电的影响. 对于两种放电, 随着预电离的增强, 带电粒子分布沿着放电方向逐渐向阴极偏移, 使得阴极位降区不断收缩. 从垂直放电方向来看, 正柱区、负辉区和阴极位降区的宽度都不断增大, 电子、离子密度的分布更加均匀. 对于电场而言, 随着预电离的增强, 阴极位降区电场的纵向分量分布逐渐向阴极收缩, 阴极附近的电场整体降低且分布更加均匀. 电场的纵向分量分布逐渐减小, 同时电场区域逐渐向壁面收缩. 维持电压和放电功率都明显地降低. 此外, 随预电离的增加, 短间隙放电中的压降始终集中在阴极位降区, 而在长间隙放电中的压降由阴极位降区逐渐转移至正柱区. 仿真结果表明, 预电离能够有效增强放电均匀性, 并降低放电维持电压和能量消耗. 该工作对进一步优化电极配置和等离子体源的运行参数具有重要指导意义.
    In this paper, the effect of pre-ionization on the small-gap and large-gap direct-current glow discharge at atmospheric pressure are investigated based on a two-dimensional self-consistent fluid model. For both the discharges, the results show that with the enhancement of pre-ionization, the charged particle distribution gradually shifts toward the cathode along the discharge direction, making the cathode fall zone shrink continuously. The width of the positive column region, negative glow space, and cathode fall zone continuously extend along the vertical discharge direction, and the distribution of electron density and ion density are more uniform. For the electric field, with the enhancement of pre-ionization, the longitudinalal component distribution of the electric field in the cathode fall zone gradually contracts toward the cathode, and the overall electric field near the cathode decreases and becomes more uniformly distributed. The transverse component distribution of the electric field gradually decreases and shrinks toward the wall. The overall electron temperature in the discharge space decreases with the enhancement of the pre-ionization level, and the electron temperature distribution in the cathode fall zone gradually shrinks toward the cathode. In addition, the overall potential of the discharge space also decreases. The introduction of pre-ionization significantly reduces the maintaining voltage and discharge power of the direct-current glow discharge. Furthermore, the potential drop in the small-gap discharge is always concentrated in the cathode fall zone as the pre-ionization increases, while the potential drop in the large-gap discharge is gradually shifted from the cathode fall zone to the positive column region. This simulation shows that the pre-ionization not only effectively enhances the discharge uniformity, but also largely reduces the maintaining voltage and energy consumption of the direct-current glow discharge. This work is an important guideline for further optimizing the electrode configuration and the operating parameters of the plasma source.
      通信作者: 汤洁, tangjie@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号:52177166, 51877210)和陕西省自然科学基金(批准号: 2020JM-309)资助的课题.
      Corresponding author: Tang Jie, tangjie@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52177166, 51877210) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JM-309).
    [1]

    Hansen L, Kohlmann N, Kienle L, Kersten H 2023 Thin Solid Films 765 139633Google Scholar

    [2]

    Marcus R K, Hoegg E D, Hall K A, Williams T J, Koppenaal D W 2021 Mass Spec. Rev. 42 652Google Scholar

    [3]

    Zheng P C, Luo Y J, Wang J M, Yang Y, Hu Q, Mao X F, Lai C H 2022 Microchem. J. 172 106883Google Scholar

    [4]

    Ibrahim J, Al-Bataineh S A, Michelmore A, Whittle J D 2021 Plasma Chem. Plasma P. 41 47Google Scholar

    [5]

    Schoenbach K H, Becker K 2016 Eur. Phys. J. D 70 29Google Scholar

    [6]

    Wanten B, Maerivoet S, Vantomme C, Slaets J, Trenchev G, Bogaerts A 2022 J. CO2 Util. 56 101869Google Scholar

    [7]

    Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M 2015 Plasma Chem. Plasma P. 35 659Google Scholar

    [8]

    刘定新, 何桐桐, 张浩 2019 高电压技术 45 14Google Scholar

    Liu D X, He T T, Zhang H 2019 High Voltage Engineering 45 14Google Scholar

    [9]

    Lei B Y, Xu B P, Wang J, Mao X L, Li J, Wang Y S, Zhao W, Duan Y X, Zorba V, Tang J 2023 Cell Rep. Phys. Sci. 4 101267Google Scholar

    [10]

    朱海龙, 师玉军, 王嘉伟, 张志凌, 高一宁, 张丰博 2022 71 145201Google Scholar

    Zhu H L, Shi Y J, Wang J W, Zhang Z L, Gao Y N, Zhang F B 2022 Acta Phys. Sin. 71 145201Google Scholar

    [11]

    李成榕, 王新新, 詹花茂, 张贵新 2003 高压电器 39 4Google Scholar

    Li C R, Wang X X, Zhan H M, Zhang G X 2003 High Voltage Apparatus 39 4Google Scholar

    [12]

    Staack D, Farouk B, Gutsol A, Fridman A 2005 Plasma Sources Sci. Technol. 14 700Google Scholar

    [13]

    王艳辉, 王德真 2003 52 1694Google Scholar

    Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694Google Scholar

    [14]

    齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁 2022 71 245202Google Scholar

    Qi B, Tian X, Wang J, Wang Y S, Si J H, Tang J 2022 Acta Phys. Sin. 71 245202Google Scholar

    [15]

    Massines F, Gherardi N, Naude N, Segur P 2009 Eur. Phys. J. Appl. Phys. 47 22805Google Scholar

    [16]

    Sremački I, Gromov M, Leys C, Morent R, Snyders R, Nikiforov A 2020 Plasma Process. Polym. 17 1900191Google Scholar

    [17]

    Mohamed A A H, Kolb J F, Schoenbach K H 2010 Eur. Phys. J. D 60 517Google Scholar

    [18]

    Rathore K, Wakim D, Chitre A, Staack D 2020 Plasma Sources Sci. Technol. 29 055011Google Scholar

    [19]

    Hansen L, Kohlmann N, Schürmann U, Kienle L, Kersten H 2022 Plasma Sources Sci. Technol. 31 035013Google Scholar

    [20]

    Bieniek M S, Hasan M I 2022 Phys. Plasmas 29 034503Google Scholar

    [21]

    Tochikubo F, Shirai N, Uchida S 2011 Appl. Phys. Express 4 056001Google Scholar

    [22]

    Saifutdinov A I 2021 J. Appl. Phys. 129 093302Google Scholar

    [23]

    Wang Q, Economou D J, Donnelly V M 2006 J. Appl. Phys. 100 023301Google Scholar

    [24]

    齐冰, 任春生, 马腾才, 王友年, 王德真 2006 55 331Google Scholar

    Qi B, Ren C S, Ma T C, Wang Y N, Wang D Z 2006 Acta Phys. Sin. 55 331Google Scholar

    [25]

    Tang J, Li S B, Zhao W, Wang Y S, Duan Y X 2012 Appl. Phys. Lett. 100 253505Google Scholar

    [26]

    Li X M, Tang J, Zhan X F, Yuan X, Zhao Z J, Yan Y Y, Duan Y X 2013 Appl. Phys. Lett. 103 033519Google Scholar

    [27]

    Jiang W M, Tang J, Wang Y S, Zhao W, Duan Y X 2014 Appl. Phys. Lett. 104 013505Google Scholar

    [28]

    Li J, Wang J, Lei B Y, Zhang T Y, Tang J, Wang Y S, Zhao W, Duan Y X 2020 Adv. Sci. 7 1902616Google Scholar

    [29]

    Sasaki K, Hosoda R, Shirai N 2020 Plasma Sources Sci. Technol. 29 085012Google Scholar

    [30]

    王晓臣, 王宁会, 李国峰 2007 高电压技术 33 2Google Scholar

    Wang X C, Wang N H, Li G F 2007 High Voltage Engineering 33 2Google Scholar

    [31]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [32]

    Laca M, Kaňka A, Schmiedt L, Hrachová V, Morávek M J 2019 Contrib. Plasma Phys. 59 e201800190Google Scholar

    [33]

    Park G, Lee H, Kim G, Lee J K 2008 Plasma Process Polym. 5 569Google Scholar

    [34]

    Wang Y H, Wang D Z 2004 Chin. Phys. Lett. 21 2234Google Scholar

    [35]

    Kong M G, Xu T D 2003 IEEE Trans. Plasma Sci. 31 7Google Scholar

    [36]

    Yuan X, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [37]

    张百灵, 王宇天, 李益文, 樊昊, 高岭, 段成铎 2016 高电压技术 42 7Google Scholar

    Zhang B L, Wang Y T, Li Y W, Fan H, Gao L, Duan C D 2016 High Voltage Engineering 42 7Google Scholar

  • 图 1  模型示意图

    Fig. 1.  Schematic diagram of the simulation model.

    图 2  短间隙放电中不同预电离下电子密度(a)和离子密度(b)的空间分布

    Fig. 2.  Spatial distributions of electron densities (a) and ion densities (b) at different pre-ionization in the small-gap discharge.

    图 3  不同预电离下带电粒子密度的空间分布 (a)正柱区空间分布; (b)正柱区空间分布的放大图; (c) y = 0.5 mm处电子密度峰值的空间分布; (d) y = 0.5 mm处离子密度峰值的空间分布

    Fig. 3.  Spatial distributions of charged particles densities under different pre-ionization: (a) Spatial distributions of the positive column region; (b) enlarged view of spatial distributions of the positive column region; (c) spatial distributions at the peak of electron density at y = 0.5 mm; (d) spatial distributions at the peak of ion density at y = 0.5 mm.

    图 4  短间隙放电中不同预电离下, 电场的空间分布 (a)纵向分量; (b)横向分量

    Fig. 4.  Spatial distributions of electric field at different pre-ionization in the small-gap discharge: (a) Longitudinal component; (b) transverse component.

    图 5  (a) 不同预电离下, 阴极处电场纵向分量的空间分布; (b)不同预电离下, 电场横向分量峰值处的空间分布

    Fig. 5.  (a) Spatial distributions of longitudinal component of the electric field in the cathode under different pre-ionization; (b) spatial distributions at the peak of transverse component of the electric field under different pre-ionization.

    图 6  不同预电离下, 电势(a)和电子温度(b)的空间分布

    Fig. 6.  Spatial distributions of potential (a) and electron temperature (b) at different pre-ionization.

    图 7  不同预电离下 (a) x = 0.8 mm处的电势空间分布; (b) y = 0.5 mm处电子温度峰值处的空间分布; (c)维持电压和放电电流的变化; (d)放电功率的变化

    Fig. 7.  Under different pre-ionization: (a) Spatial distribution of potential at x = 0.8 mm; (b) spatial distributions at the peak of the electron temperature at y = 0.5 mm; (c) variations of sustaining voltage, discharge current; (d) variations of discharge power.

    图 8  长间隙放电中不同预电离下, 电子密度(a)和离子密度(b)的空间分布

    Fig. 8.  Spatial distributions of electron densities (a) and ion densities (b) at different pre-ionization in the large-gap discharge.

    图 9  不同预电离下, 带电粒子密度的空间分布 (a)正柱区的空间分布; (b)正柱区空间分布的放大图; (c) y = 0.5 mm电子密度峰值的空间分布; (d) y = 0.5 mm离子密度峰值的空间分布

    Fig. 9.  Spatial distributions of charged particles densities under different pre-ionization: (a) Spatial distributions of the positive column region; (b) enlarged view of spatial distributions of the positive column region; (c) spatial distributions at the peak of electron density at y = 0.5 mm; (d) spatial distributions at the peak of ion density at y = 0.5 mm.

    图 10  长间隙放电中不同预电离下, 电场的空间分布 (a)纵向分量; (b)横向分量

    Fig. 10.  Spatial distributions of electric field at different pre-ionization in the large-gap discharge: (a) Longitudinal component; (b) transverse component.

    图 11  (a) 不同预电离下, 阴极处电场纵向分量的空间分布; (b)不同预电离下, 电场横向分量峰值处的空间分布

    Fig. 11.  (a) Spatial distributions of longitudinal component of the electric field in the cathode under different pre-ionization; (b) spatial distributions at the peak of transverse component of the electric field under different pre-ionization.

    图 12  不同预电离下, 电势(a)和电子温度(b)的空间分布

    Fig. 12.  Spatial distributions of potential (a) and electron temperature (b) at different pre-ionization.

    图 13  不同预电离下 (a) x = 8 mm处的电势空间分布; (b) y = 0.5 mm电子温度峰值处的空间分布; (c)维持电压、放电电流和(d)放电功率的变化

    Fig. 13.  Under different pre-ionization: (a) Spatial distribution of potential at x = 8 mm; (b) spatial distributions at the peak of the electron temperature at y = 0.5 mm; (c) variations of sustaining voltage, discharge current and (d) discharge power.

    表 1  模型中的化学反应

    Table 1.  Chemical reactions in the model.

    No. Reaction Rate constant/
    (cm–3·s–1)
    Ref.
    1 e+He → e+He f(E/N) [31]
    2 e+He → e+He* f(E/N) [32]
    3 e+He → 2e+He+ f(E/N) [32]
    4 2e+He+ → He*+e 7.1$ \times $10–20a) [32]
    5 2e+$ {\text{He}}_{2}^{+} $ → 2He+e 2.0$ \times $10–20a) [32]
    6 2e+$ {\text{He}}_{2}^{+} $ → He+He*+e 2.8$ \times $10–20a) [33]
    7 e+He+$ {\text{He}}_{2}^{+} $ → 3He 2.0$ \times $10–27a) [33]
    8 e+He* → 2e+He+ 1.28$ \times $10–7$ {T}_{{\mathrm{e}}}^{0.6} $
    exp(–4.78/$ {T}_{{\mathrm{e}}} $)
    [33]
    9 e+$ {\text{He}}_{2}^{+} $ → He*+He 1$ \times $10–8 [33]
    10 He*+e → He+e 2$ \times $10–10 [33]
    11 2e+$ {\text{He}}_{2}^{+} $ → 2He*+e 6.18$ \times $10–39$ {T}_{{\mathrm{e}}}^{4.4} $a) [33]
    12 e+He+$ {\text{He}}_{2}^{+} $ → He*+2He 5.0$ \times $10–27a) [35]
    13 e+$ {\text{He}}_{2}^{+} $ → $ {\text{He}}_{2}^{\text{*}} $ 5.0$ \times $10–16 [35]
    14 e+He+$ {\text{He}}_{2}^{+} $ → $ {\text{He}}_{2}^{\text{*}} $+He 5.0$ \times $10–27a) [35]
    15 e+$ {\text{He}}_{2}^{\text{*}} $ → 2e+$ {\text{He}}_{2}^{+} $ 3.8$ \times $10–9 [36]
    16 e+He+ He+ → He*+He 1.0$ \times $10–27a) [36]
    17 2e+$ {\text{He}}_{2}^{+} $ → $ {\text{He}}_{2}^{\text{*}} $+e 7.1$ \times $10–20a) [35]
    18 2He+He+ → He+$ {\text{He}}_{2}^{+} $ 6.5$ \times $10–32a) [32]
    19 He*+He → 2He+$ h\nu $ 6.0$ \times $10–15 [32]
    20 He*+He* → e+$ {\text{He}}_{2}^{+} $ 2.0$ \times $10–9 [34]
    21 He*+He* → e+He+He+ 2.9$ \times $10–9 [35]
    a) Rate constant is in cm6·s–1.
    下载: 导出CSV
    Baidu
  • [1]

    Hansen L, Kohlmann N, Kienle L, Kersten H 2023 Thin Solid Films 765 139633Google Scholar

    [2]

    Marcus R K, Hoegg E D, Hall K A, Williams T J, Koppenaal D W 2021 Mass Spec. Rev. 42 652Google Scholar

    [3]

    Zheng P C, Luo Y J, Wang J M, Yang Y, Hu Q, Mao X F, Lai C H 2022 Microchem. J. 172 106883Google Scholar

    [4]

    Ibrahim J, Al-Bataineh S A, Michelmore A, Whittle J D 2021 Plasma Chem. Plasma P. 41 47Google Scholar

    [5]

    Schoenbach K H, Becker K 2016 Eur. Phys. J. D 70 29Google Scholar

    [6]

    Wanten B, Maerivoet S, Vantomme C, Slaets J, Trenchev G, Bogaerts A 2022 J. CO2 Util. 56 101869Google Scholar

    [7]

    Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M 2015 Plasma Chem. Plasma P. 35 659Google Scholar

    [8]

    刘定新, 何桐桐, 张浩 2019 高电压技术 45 14Google Scholar

    Liu D X, He T T, Zhang H 2019 High Voltage Engineering 45 14Google Scholar

    [9]

    Lei B Y, Xu B P, Wang J, Mao X L, Li J, Wang Y S, Zhao W, Duan Y X, Zorba V, Tang J 2023 Cell Rep. Phys. Sci. 4 101267Google Scholar

    [10]

    朱海龙, 师玉军, 王嘉伟, 张志凌, 高一宁, 张丰博 2022 71 145201Google Scholar

    Zhu H L, Shi Y J, Wang J W, Zhang Z L, Gao Y N, Zhang F B 2022 Acta Phys. Sin. 71 145201Google Scholar

    [11]

    李成榕, 王新新, 詹花茂, 张贵新 2003 高压电器 39 4Google Scholar

    Li C R, Wang X X, Zhan H M, Zhang G X 2003 High Voltage Apparatus 39 4Google Scholar

    [12]

    Staack D, Farouk B, Gutsol A, Fridman A 2005 Plasma Sources Sci. Technol. 14 700Google Scholar

    [13]

    王艳辉, 王德真 2003 52 1694Google Scholar

    Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694Google Scholar

    [14]

    齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁 2022 71 245202Google Scholar

    Qi B, Tian X, Wang J, Wang Y S, Si J H, Tang J 2022 Acta Phys. Sin. 71 245202Google Scholar

    [15]

    Massines F, Gherardi N, Naude N, Segur P 2009 Eur. Phys. J. Appl. Phys. 47 22805Google Scholar

    [16]

    Sremački I, Gromov M, Leys C, Morent R, Snyders R, Nikiforov A 2020 Plasma Process. Polym. 17 1900191Google Scholar

    [17]

    Mohamed A A H, Kolb J F, Schoenbach K H 2010 Eur. Phys. J. D 60 517Google Scholar

    [18]

    Rathore K, Wakim D, Chitre A, Staack D 2020 Plasma Sources Sci. Technol. 29 055011Google Scholar

    [19]

    Hansen L, Kohlmann N, Schürmann U, Kienle L, Kersten H 2022 Plasma Sources Sci. Technol. 31 035013Google Scholar

    [20]

    Bieniek M S, Hasan M I 2022 Phys. Plasmas 29 034503Google Scholar

    [21]

    Tochikubo F, Shirai N, Uchida S 2011 Appl. Phys. Express 4 056001Google Scholar

    [22]

    Saifutdinov A I 2021 J. Appl. Phys. 129 093302Google Scholar

    [23]

    Wang Q, Economou D J, Donnelly V M 2006 J. Appl. Phys. 100 023301Google Scholar

    [24]

    齐冰, 任春生, 马腾才, 王友年, 王德真 2006 55 331Google Scholar

    Qi B, Ren C S, Ma T C, Wang Y N, Wang D Z 2006 Acta Phys. Sin. 55 331Google Scholar

    [25]

    Tang J, Li S B, Zhao W, Wang Y S, Duan Y X 2012 Appl. Phys. Lett. 100 253505Google Scholar

    [26]

    Li X M, Tang J, Zhan X F, Yuan X, Zhao Z J, Yan Y Y, Duan Y X 2013 Appl. Phys. Lett. 103 033519Google Scholar

    [27]

    Jiang W M, Tang J, Wang Y S, Zhao W, Duan Y X 2014 Appl. Phys. Lett. 104 013505Google Scholar

    [28]

    Li J, Wang J, Lei B Y, Zhang T Y, Tang J, Wang Y S, Zhao W, Duan Y X 2020 Adv. Sci. 7 1902616Google Scholar

    [29]

    Sasaki K, Hosoda R, Shirai N 2020 Plasma Sources Sci. Technol. 29 085012Google Scholar

    [30]

    王晓臣, 王宁会, 李国峰 2007 高电压技术 33 2Google Scholar

    Wang X C, Wang N H, Li G F 2007 High Voltage Engineering 33 2Google Scholar

    [31]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [32]

    Laca M, Kaňka A, Schmiedt L, Hrachová V, Morávek M J 2019 Contrib. Plasma Phys. 59 e201800190Google Scholar

    [33]

    Park G, Lee H, Kim G, Lee J K 2008 Plasma Process Polym. 5 569Google Scholar

    [34]

    Wang Y H, Wang D Z 2004 Chin. Phys. Lett. 21 2234Google Scholar

    [35]

    Kong M G, Xu T D 2003 IEEE Trans. Plasma Sci. 31 7Google Scholar

    [36]

    Yuan X, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [37]

    张百灵, 王宇天, 李益文, 樊昊, 高岭, 段成铎 2016 高电压技术 42 7Google Scholar

    Zhang B L, Wang Y T, Li Y W, Fan H, Gao L, Duan C D 2016 High Voltage Engineering 42 7Google Scholar

  • [1] 肖江平, 戴栋, Victor F. Tarasenko, 邵涛. 大气压空气纳秒脉冲板-板放电中逃逸电子产生机理.  , 2023, 72(10): 105201. doi: 10.7498/aps.72.20222409
    [2] 王倩, 范元媛, 赵江山, 刘斌, 亓岩, 颜博霞, 王延伟, 周密, 韩哲, 崔惠绒. 准分子激光器预电离过程影响分析.  , 2023, 72(19): 194201. doi: 10.7498/aps.72.20230731
    [3] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究.  , 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [4] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟.  , 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [5] 齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁. 射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究.  , 2022, 71(24): 245202. doi: 10.7498/aps.71.20221361
    [6] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法.  , 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [7] 王倩, 赵江山, 范元媛, 郭馨, 周翊. 不同缓冲气体中ArF准分子激光系统放电特性分析.  , 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [8] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究.  , 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [9] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟.  , 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [10] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真.  , 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [11] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性.  , 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [12] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法.  , 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [13] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究.  , 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [14] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究.  , 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [15] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究.  , 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [16] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究.  , 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [17] 刘辉, 吴勃英, 鄂鹏, 段萍. ATON型Hall推力器缓冲区预电离问题研究.  , 2010, 59(10): 7203-7208. doi: 10.7498/aps.59.7203
    [18] 程兆谷, 李现勤, 柴雄良, 高海军, 刘翠青. 预电离脉冲群开关技术高功率脉冲CO2激光器.  , 2004, 53(5): 1362-1366. doi: 10.7498/aps.53.1362
    [19] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟.  , 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [20] 傅广生, 于威, 王淑芳, 李晓苇, 张连水, 韩理. 辉光放电等离子体辅助XeCl准分子激光溅射沉积碳氮薄膜.  , 2001, 50(11): 2263-2268. doi: 10.7498/aps.50.2263
计量
  • 文章访问数:  2001
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-03
  • 修回日期:  2023-11-16
  • 上网日期:  2023-11-29
  • 刊出日期:  2024-01-05

/

返回文章
返回
Baidu
map