-
采用水热法一步合成二维(2D)纳米片组成的SnS2/ZnS微花结构, 在空气气氛中煅烧获得不同组分的微花复合结构, 通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线能谱仪(EDS)、透射电子显微镜(TEM)和气敏特性分析仪, 研究了煅烧温度对微花结构组分和气敏性能的影响. 结果表明: 450 ℃煅烧得到的SnO2/ZnS(SZ-450)微花结构的室温NO2气敏性能优于其他煅烧温度得到的微花结构, 其室温下对体积分数为10–4 NO2的响应值可达27.55, 响应/恢复时间为53 s/79 s, 理论检测下限低至2.1×10–7 (体积分数), 并具有良好的选择性、重复性和稳定性. 分析认为SZ-450元件优异的室温气敏特性与SnO2和ZnS之间的异质结有关, 本文可为室温NO2气体传感器提供敏感材料, 推动其研发及应用进程.SnS2/ZnS microflower structures are prepared by one-step hydrothermal method. The microflower structures with different components are obtained after calcinating SnS2/ZnS in air atmosphere. The influences of calcination temperature on the components and gas-sensing properties of microflower structures are investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), transmission electron microscopey (TEM), and gas sensitive characteristic analyzer. The results show that the gas-sensing performance to NO2 at room temperature of SnO2/ZnS microflower structure (SZ-450) is better than that of microflower structure calcinated at the other temperature. The response of SZ-450-based sensor to 10–4 NO2 at room temperature can reach 27.55, the response/recovery time is 53 s/79 s, the theoretical detection limit is as low as 2.1×10–7, and it has good selectivity, repeatability, and stability. The analysis indicates that the excellent room-temperature gas-sensing characteristic of SZ-450 is related to the heterojunction between SnO2 and ZnS. This work can provide sensitive materials for room-temperature NO2 gas sensor and promote its development and application.
-
Keywords:
- SnO2/ZnS /
- gas sensor /
- NO2 detection /
- room temperature
[1] 储宇星, 刘海瑞, 闫爽 2021 无机材料学报 36 950Google Scholar
Chu X Y, Liu H R, Yan S 2021 J. Inorg. Mater. 36 950Google Scholar
[2] 许雪梅, 李奔荣, 杨兵初, 蒋礼, 尹林子, 丁一鹏, 曹粲 2013 62 200704Google Scholar
Xu X M, Li B R, Yang B C, Jiang L, Yin L Z, Ding Y P, Cao C 2013 Acta Phys. Sin. 62 200704Google Scholar
[3] Yang Z, Su C, Wang S T, Han Y T, Chen X W, Xu S, Zhou Z H, Hu N T, Su Y J, Zeng M 2020 Nanotechnology 31 075501Google Scholar
[4] Das S, Jayaraman V 2014 Prog. Mater. 66 112Google Scholar
[5] Zhang J, Wang S R, Wang Y M, et al. 2009 Sens. Actuators B Chem. 135 610Google Scholar
[6] Li J, Yang M, Cheng X L, et al. 2021 J. Hazard. Mater. 419 126414Google Scholar
[7] Shah V, Bhaliya J, Patel G, Joshi P 2022 J. Inorg. Organomet. P. 32 741Google Scholar
[8] Kumar S, Pavelyev V, Mishra P, Tripathi N, Sharma P, Calle F 2020 Mat. Sci. Semicon. Proc. 107 104865Google Scholar
[9] Bag A, Lee N E 2019 J. Mater. Chem. C 7 13367Google Scholar
[10] Mutlu Z, Wu R J, Wickramaratne D, et al. 2016 Small 12 2935Google Scholar
[11] Hao J Y, Zhang D, Sun Q, Zheng S L, Sun Y J, Wang Y 2018 Nanoscale 10 7210Google Scholar
[12] Gu D, Li X G, Zhao Y Y, Wang J 2017 Sens. Actuators B Chem. 244 67Google Scholar
[13] Wang X, Xie Z, Huang H, Liu Z, Chen D, Shen G 2012 J. Mater. Chem. A 22 6845Google Scholar
[14] Li Y, Shan L X, Lian X X, Zhou Q J, An D M 2021 Ceram. Int. 47 27411Google Scholar
[15] Wahab R, Ansari S G, Kim Y S, Dhage M S, Seo H K, Shin S H S 2009 Met. Mater. Int. 15 453Google Scholar
[16] Houšková V, Štengl V, Bakardjieva S, Murafa N, Kalendová A 2007 J. Phys. Chem. A 111 4215Google Scholar
[17] Mohamed S H, Awad M A, Shaban M 2022 Appl. Phys. A 128 1Google Scholar
[18] Hu J, Gao F Q, Zhao Z T, Sang S B, Li P W, Zhang W D, Zhou X T, Chen Y 2016 Appl. Surf. Sci. 363 181Google Scholar
[19] Park S, An S, Mun Y, Lee C 2014 Curr. Appl. Phys. 14 S57Google Scholar
[20] Park S, Kim S, Ko H, Lee C 2014 J. Electroceram 33 75Google Scholar
[21] Park S H, An S Y, Ko H S, Lee S M, Lee C M 2013 Sens. Actuators B Chem. 188 1270Google Scholar
[22] Chen X W, Wang T, Han Y T, Lv W, Li B L, Su C, Zeng M, Yang J H, Hu N T, Su Y J, Yang Z 2021 Sens. Actuators B Chem. 345 130423Google Scholar
[23] Gao R, Zhang X F, Wu Y Y, et al. 2023 Sens. Actuators B Chem. 380 133304Google Scholar
[24] Laera A M, Mirenghi L, Cassano G, et al. 2020 Thin Solid Films 709 138190Google Scholar
[25] Liu C, Chen X W, Luo H Y, Li B L, Shi J, Fan C, Yang J H, Zeng M, Zhou Z H, Hu N T, Su Y J, Yang Z 2021 Sens. Actuators B Chem. 347 130608Google Scholar
[26] Park S, Sun G J, Kheel H, Ko T, Kim H W, Lee C 2016 Appl. Phys. A 122 1Google Scholar
[27] Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S 2011 Sens. Actuators B Chem. 160 580Google Scholar
[28] Li Y, Song S, Zhang L B, Lian X X, Zhou Q J 2021 J. Alloys Compd. 855 157430Google Scholar
[29] Liu D, Tang Z L, Zhang Z T 2020 Sens. Actuators B Chem. 324 128754Google Scholar
[30] Huang B Y, Zhu Q Q, Xu H, Li X L, Li X, Li X G 2023 Sens. Actuators B Chem. 380 133303Google Scholar
[31] Zhu Q Q, Gu D, Liu Z, Huang B Y, Li X G 2021 Sens. Actuators B Chem. 349 130775Google Scholar
[32] Sharma I, Mehta B R 2017 Appl. Phys. Lett. 110 061602Google Scholar
[33] Yang X L, Zhang S F, Yu Q, et al. 2019 Sens. Actuators B Chem. 281 415Google Scholar
[34] Xu X H, Ma S Y, Xu X L, Pei S T, Han T, Liu W W 2021 J. Alloys Compd. 868 159286Google Scholar
[35] Liu Y M, Zhang J N, Li G, Liu J, Liang Q F, Wang H J, Zhu Y Y, Gao J Z, Lu H B 2022 Sens. Actuators B Chem. 355 131322Google Scholar
-
表 1 室温下不同NO2传感器的比较
Table 1. Comparison of different NO2 sensors at RT.
-
[1] 储宇星, 刘海瑞, 闫爽 2021 无机材料学报 36 950Google Scholar
Chu X Y, Liu H R, Yan S 2021 J. Inorg. Mater. 36 950Google Scholar
[2] 许雪梅, 李奔荣, 杨兵初, 蒋礼, 尹林子, 丁一鹏, 曹粲 2013 62 200704Google Scholar
Xu X M, Li B R, Yang B C, Jiang L, Yin L Z, Ding Y P, Cao C 2013 Acta Phys. Sin. 62 200704Google Scholar
[3] Yang Z, Su C, Wang S T, Han Y T, Chen X W, Xu S, Zhou Z H, Hu N T, Su Y J, Zeng M 2020 Nanotechnology 31 075501Google Scholar
[4] Das S, Jayaraman V 2014 Prog. Mater. 66 112Google Scholar
[5] Zhang J, Wang S R, Wang Y M, et al. 2009 Sens. Actuators B Chem. 135 610Google Scholar
[6] Li J, Yang M, Cheng X L, et al. 2021 J. Hazard. Mater. 419 126414Google Scholar
[7] Shah V, Bhaliya J, Patel G, Joshi P 2022 J. Inorg. Organomet. P. 32 741Google Scholar
[8] Kumar S, Pavelyev V, Mishra P, Tripathi N, Sharma P, Calle F 2020 Mat. Sci. Semicon. Proc. 107 104865Google Scholar
[9] Bag A, Lee N E 2019 J. Mater. Chem. C 7 13367Google Scholar
[10] Mutlu Z, Wu R J, Wickramaratne D, et al. 2016 Small 12 2935Google Scholar
[11] Hao J Y, Zhang D, Sun Q, Zheng S L, Sun Y J, Wang Y 2018 Nanoscale 10 7210Google Scholar
[12] Gu D, Li X G, Zhao Y Y, Wang J 2017 Sens. Actuators B Chem. 244 67Google Scholar
[13] Wang X, Xie Z, Huang H, Liu Z, Chen D, Shen G 2012 J. Mater. Chem. A 22 6845Google Scholar
[14] Li Y, Shan L X, Lian X X, Zhou Q J, An D M 2021 Ceram. Int. 47 27411Google Scholar
[15] Wahab R, Ansari S G, Kim Y S, Dhage M S, Seo H K, Shin S H S 2009 Met. Mater. Int. 15 453Google Scholar
[16] Houšková V, Štengl V, Bakardjieva S, Murafa N, Kalendová A 2007 J. Phys. Chem. A 111 4215Google Scholar
[17] Mohamed S H, Awad M A, Shaban M 2022 Appl. Phys. A 128 1Google Scholar
[18] Hu J, Gao F Q, Zhao Z T, Sang S B, Li P W, Zhang W D, Zhou X T, Chen Y 2016 Appl. Surf. Sci. 363 181Google Scholar
[19] Park S, An S, Mun Y, Lee C 2014 Curr. Appl. Phys. 14 S57Google Scholar
[20] Park S, Kim S, Ko H, Lee C 2014 J. Electroceram 33 75Google Scholar
[21] Park S H, An S Y, Ko H S, Lee S M, Lee C M 2013 Sens. Actuators B Chem. 188 1270Google Scholar
[22] Chen X W, Wang T, Han Y T, Lv W, Li B L, Su C, Zeng M, Yang J H, Hu N T, Su Y J, Yang Z 2021 Sens. Actuators B Chem. 345 130423Google Scholar
[23] Gao R, Zhang X F, Wu Y Y, et al. 2023 Sens. Actuators B Chem. 380 133304Google Scholar
[24] Laera A M, Mirenghi L, Cassano G, et al. 2020 Thin Solid Films 709 138190Google Scholar
[25] Liu C, Chen X W, Luo H Y, Li B L, Shi J, Fan C, Yang J H, Zeng M, Zhou Z H, Hu N T, Su Y J, Yang Z 2021 Sens. Actuators B Chem. 347 130608Google Scholar
[26] Park S, Sun G J, Kheel H, Ko T, Kim H W, Lee C 2016 Appl. Phys. A 122 1Google Scholar
[27] Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S 2011 Sens. Actuators B Chem. 160 580Google Scholar
[28] Li Y, Song S, Zhang L B, Lian X X, Zhou Q J 2021 J. Alloys Compd. 855 157430Google Scholar
[29] Liu D, Tang Z L, Zhang Z T 2020 Sens. Actuators B Chem. 324 128754Google Scholar
[30] Huang B Y, Zhu Q Q, Xu H, Li X L, Li X, Li X G 2023 Sens. Actuators B Chem. 380 133303Google Scholar
[31] Zhu Q Q, Gu D, Liu Z, Huang B Y, Li X G 2021 Sens. Actuators B Chem. 349 130775Google Scholar
[32] Sharma I, Mehta B R 2017 Appl. Phys. Lett. 110 061602Google Scholar
[33] Yang X L, Zhang S F, Yu Q, et al. 2019 Sens. Actuators B Chem. 281 415Google Scholar
[34] Xu X H, Ma S Y, Xu X L, Pei S T, Han T, Liu W W 2021 J. Alloys Compd. 868 159286Google Scholar
[35] Liu Y M, Zhang J N, Li G, Liu J, Liang Q F, Wang H J, Zhu Y Y, Gao J Z, Lu H B 2022 Sens. Actuators B Chem. 355 131322Google Scholar
计量
- 文章访问数: 3770
- PDF下载量: 86
- 被引次数: 0