搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面

杨东如 程用志 罗辉 陈浮 李享成

引用本文:
Citation:

基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面

杨东如, 程用志, 罗辉, 陈浮, 李享成

Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission

Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng
PDF
HTML
导出引用
  • 提出了一种基于双开缝环结构的半反射和半透射双偏振超宽带太赫兹超表面, 能实现光束偏折和生成涡旋光束. 该超表面单元结构仅由附着在超薄介质层上的金属双开缝环构成, 在超宽频带范围内同时调控反射和透射太赫兹圆偏振(circular polarization, CP)波和线偏振( linear polarization, LP)波. 基于传输相位和几何相位理论, 改变开缝环的大小和旋转方向, 在0.3—1.2 THz范围内可以实现透射和反射的正交LP波和CP波在0—2π相移全覆盖, 对应的正交LP波和CP波平均幅值为0.45的相对带宽分别达到86%和120%. 本文特别设计了全空间超表面模型, 实现了LP波和CP波光束偏折与生成涡旋光束. 这些研究有助于全空间多功能太赫兹超表面器件的实现和实际应用.
    In this paper, we propose a dual-polarization ultra-wideband metasurface with half-reflection and half-transmission based on a double-split-ring (DSR) structure operating in a terahertz (THz) frequency range. The designed metasurface can simultaneously control the circularly polarized (CP) wave and linearly polarized (LP) wave in reflection mode and transmission mode, covering an extensive THz frequency range. The unit-cell architecture of the metasurface consists of a periodic arrangement of the DSR structure made of metal, which is affixed to an ultra-thin dielectric substrate. By manipulating the size and rotation direction of the DSR structure, we achieve full phase coverage of 0–2π of the orthogonally polarized LP wave and CP wave across a frequency span of 0.3–1.2 THz, encompassing transmission and reflection scenarios. The relative bandwidths of the corresponding orthogonal LP wave and CP wave with an average amplitude of 0.45 reach 86% and 120%, respectively. Specifically, through numerical simulations, we demonstrate that the designed metasurface has the ability to achieve THz beam deflection and vortex beam generation while reflecting and transmitting LP wave and CP wave. The proposed dual-polarization ultra-wideband metasurface holds great promise for various applications in the terahertz frequency range. These findings pave the way for the development of flexible and versatile THz devices with expanded functionality, thereby opening up new possibilities for wavefront manipulation in metasurfaces.
      通信作者: 程用志, chengyz@wust.edu.cn ; 李享成, lixiangcheng@wust.edu.cn
    • 基金项目: 湖北省自然科学基金创新群体项目 (批准号: 2020CFA038)和湖北省重点研发项目(批准号: 2020BAA028)资助的课题.
      Corresponding author: Cheng Yong-Zhi, chengyz@wust.edu.cn ; Li Xiang-Cheng, lixiangcheng@wust.edu.cn
    • Funds: Project supported by the Natural Science Foundation Innovation Group Project of Hubei Province, China (Grant No. 2020CFA038) and the Key Research and Development Project of Hubei Province, China (Grant No. 2020BAA028).
    [1]

    郝宏刚, 冉雪红, 郑森, 唐逸豪, 阮巍 2022 电子与信息学报 44 114284741Google Scholar

    Hao H G, Ran X H, Zheng S, Tang Y H, Ruan W 2022 J. Electron. Inform. Technol. 44 114284741Google Scholar

    [2]

    刘靖宇, 李文宇, 刘智星, 舒敬懿, 赵国忠 2022 71 230701Google Scholar

    Liu J Y, Li W Y, Liu Z X, Shu J Y, Zhao G Z 2022 Acta Phys. Sin. 71 230701Google Scholar

    [3]

    王俊瑶, 樊俊鹏, 舒好, 刘畅, 程用志 2021 光电工程 48 200319Google Scholar

    Wang J Y, Fan J P, Shu H, Liu C, Cheng Y Z 2021 Opto-Electronic Eng. 48 200319Google Scholar

    [4]

    Fan J P, Cheng Y Z 2020 J. Phys. D. Appl. Phys. 53 025109Google Scholar

    [5]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 33Google Scholar

    [6]

    He B, Liu J Q, Cheng Y Z, Chen F, Luo H, Li X C 2022 Physica E 144 115373Google Scholar

    [7]

    李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓 2021 70 188701Google Scholar

    Li G Q, Shi H Y, Liu K, Li B L, Yi J J, Zhang A X, Xu Z 2021 Acta Phys. Sin. 70 188701Google Scholar

    [8]

    周璐, 赵国忠, 李晓楠 2019 68 108701Google Scholar

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar

    [9]

    Li N, Zhao J, Tang P, Cheng Y 2023 Phys. Status Solidi B 5 2300104

    [10]

    Cheng Y Z, Qian Y J, Luo H, Chen F, Cheng Z 2023 Physica E 146 115527Google Scholar

    [11]

    Liu M, Huo P, Zhu W, Zhang C, Zhang S, Song M, Zhang S, Zhou Q, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T 2021 Nat. Commun. 12 2230Google Scholar

    [12]

    Hou H S, Wang G M, Li H P, Guo W L, Cai T 2020 Opt. Express 19 27575

    [13]

    Zhu X Z, Cheng Y Z, Chen F, Luo H, Ling W 2022 J. Opt. Soc. Am. B 39 705Google Scholar

    [14]

    Cai T, Wang G M, Tang S W, Xu H X, Duan J W, Guo H J, Guan F X, Sun S L, He Q, Zhou L 2017 Phys. Rev. Appl. 8 034033Google Scholar

    [15]

    Wu R Y, Zhang L, Bao L, Wu L W, Ma Q, Bai G D, Wu H T, Cui T J 2019 Adv. Optical Mater. 7 1801429Google Scholar

    [16]

    Fan J P, Cheng Y Z, He B 2021 J. Phys. D. Appl. Phys. 54 115101Google Scholar

    [17]

    Li J, Cheng Y Z, Li X C 2022 Adv. Theor. Simul. 5 2200151Google Scholar

    [18]

    Zhang C B, Wang G M, Xu H X, Zhang X, Li H P 2020 Adv. Opt. Mater. 8 1901719Google Scholar

    [19]

    Zhang H C, Zhang X, Ma X L, Pu M B, Huang C, Zhang Z J, Wang Y X, Guo Y H, Luo J, Luo X G 2022 Opt. Express 30 36949Google Scholar

    [20]

    Mao R Q, Wang G M, Cai T, Liu K, Wang D P, Wu B 2020 Opt. Express 21 31216

    [21]

    Yang D R, Cheng Y Z, Luo H, Chen F, Wu, 2023 Adv. Theor. Simul. 4 2300162

    [22]

    Zhao J, Li N, Cheng Y 2023 Opt. Commun. 536 129372Google Scholar

    [23]

    Zhao Y, Alù A 2011 Phys. Rev. B 84 205428Google Scholar

    [24]

    Yang L J, Li J S 2022 Opt. Eng. 61 047105

    [25]

    Liu J Q, Cheng Y Z, Chen F, Luo H, Li X C 2023 J. Opt. Soc. Am. B 40 441Google Scholar

    [26]

    刘佳琪, 程用志, 陈浮, 罗辉, 李享成 2023 红外与激光工程 52 20220377Google Scholar

    Liu J Q, Cheng Y Z, Chen F, Luo H 2023 Infrared Laser Engineer. 52 20220377Google Scholar

  • 图 1  MS示意图 (a), (b)单元结构前视图和透视图; LPy波垂直入射下在(c) 0.4 THz, (d) 0.8 THz和(e) 1.1 THz处单元结构表面电流分布

    Fig. 1.  Schematic diagram of MS: (a), (b) Front and perspective view of the unit-cell structure; the surface current distributions of the unit-cell structure under the normal incident LPy wave at (c) 0.4 THz, (d) 0.8 THz and (e) 1.1 THz.

    图 2  入射LP波和CP波通过单层MS转化成正交偏振波的(a1), (c1)反射系数(rxy, ryx, r–+, r+–)和(b1), (d1)透射系数(txy, tyx, t–+, t+–)以及(a2)—(d2)对应的相位

    Fig. 2.  Reflection coefficient (rxy, ryx, r–+, r+–) (a1), (c1) and transmission coefficient (txy, tyx, t–+, t+–) (b1), (d1) of the orthogonal polarization wave for the normal incident LP wave and CP wave through the designed single-layer MS, and the corresponding phase (a2)–(d2).

    图 3  在0.5 THz, 8个不同单元结构的(a), (c)反射和透射(b), (d)正交LP和CP波的幅值和相位 (a), (b) LP波; (c), (d) CP波; 插图是一个具有(a), (b)传输相位和(c), (d)几何相位梯度分布的8个不同单元MS超单元结构

    Fig. 3.  Amplitude and phase of the (a), (c) reflected and (b), (d) transmitted orthogonal LP and CP waves for 8 different unit-cells at 0.5 THz: (a), (b) LP wave; (c), (d) CP wave. The inset shows a supercell of the MS with 8 unit-cells with gradient distributions of (a), (b) propagation phase and (c), (d) geometric phase.

    图 4  (a), (b)在0.5 THz 时异常反射和折射的LP波在x-z平面电场分布; (c), (d)对应的归一化强度

    Fig. 4.  (a), (b) Simulated electric field distributions of the abnormal reflection and refraction orthogonal LP wave in the x-z plane at 0.5 THz, and (c), (d) the corresponding normalized intensity.

    图 5  (a), (b)在0.8 THz时异常反射和折射的CP波在x-z平面中的电场分布; (c), (d)对应的归一化强度

    Fig. 5.  (a), (b) Simulated electric field distributions of the abnormal reflection and refraction orthogonal CP wave in the x-z plane at 0.8 THz, and (c), (d) the corresponding normalized intensity.

    图 6  仿真得到的不同频率下正交LP波和CP波的(a), (c)反射角和(b), (d)折射角 (a), (b) LP波; (c), (d) CP波; 虚线是对应的理论计算得到的依赖于频率的正交LP和CP波反射和折射角

    Fig. 6.  Simulated (a), (c) reflection and (b), (d) refraction angles of the orthogonal LP waves and CP waves via different frequencies: (a), (b) LP waves; (c), (d) CP waves. Dash lines indicate the theoretical calculation frequency-dependent reflection and refraction angles of the orthogonal LP and CP waves.

    图 7  所提出的生成不同OAM拓扑电荷涡旋光束的单层MS补偿相位分布 (a) l = +1; (b) l = –1; (c) l = +2; (d) l = –2

    Fig. 7.  Compensating phase distribution of the proposed single-layer MS for the generated vortex beam with different OAM topological charges: (a) l = +1; (b) l = –1; (c) l = +2; (d) l = –2.

    图 8  在0.8 THz垂直入射的LP波通过设计的单层MS后拓扑电荷数为(a1)—(a4) l = +1, (b1)—(b4) l = –1, (c1)—(c4) l = +2, (d1)—(d4) l = –2的反射和透射涡旋光束的电场强度分布和对应的OAM模式纯度分布 (a1)—(d1)反射涡旋光束的电场强度分布; (a2)—(d2)透射涡旋光束的电场强度分布; (a3)—(d3)反射涡旋光束的OAM模式纯度分布; (a4)—(d4)透射涡旋光束的OAM模式纯度分布

    Fig. 8.  Electric field intensity and the corresponding OAM mode purity distributions of the reflected and transmitted vortex beams with a topological charge of (a1)–(a4) l = +1, (b1)–(b4) l = –1, (c1)–(c4) l = +2 and (d1)–(d4) l = –2 for the normal incident LP wave at 0.8 THz: (a1)–(d1) Electric field intensity of reflected vortex beams; (a2)–(d2) electric field intensity of transmitted vortex beams; (a3)–(d3) OAM mode purity distributions of reflected vortex beams; (a4)–(d4) OAM mode purity distributions of transmitted vortex beams.

    图 9  在0.4 THz垂直入射的CP波通过设计的单层MS后拓扑电荷数为(a1)—(a4)l = +1, (b1)—(b4) l = –1, (c1)—(c4) l = +2和(d1)—(d4) l = –2的反射和透射涡旋光束电场强度分布和对应的OAM模式纯度分布 (a1)—(d1)反射涡旋光束的电场强度分布; (a2)—(d2)透射涡旋光束的电场强度分布; (a3)—(d3)反射涡旋光束的OAM模式纯度分布; (a4)—(d4)透射涡旋光束的OAM模式纯度分布

    Fig. 9.  Electric field intensity and the corresponding OAM mode purity distributions of the reflected and transmitted vortex beams with a topological charge of (a1)–(a4) l = +1, (b1)–(b4) l = –1, (c1)–(c4) l = +2 and (d1)–(d4) l = –2 for the normal incident CP wave at 0.4 THz: (a1)–(d1) Electric field intensity of reflected vortex beams; (a2)–(d2) electric field intensity of transmitted vortex beams; (a3)–(d3) OAM mode purity distributions of reflected vortex beams; (a4)–(d4) OAM mode purity distributions of transmitted vortex beams.

    表 1  本文提出的MS与之前提出的结构性能对比

    Table 1.  Performance comparison of the proposed metasurface with the previous ones.

    文献结构配置偏振相对工作带宽实现的功能操作模式
    [12]三层CP20%偏折、聚焦反射/透射
    [13]二层CP35.3%偏射、聚焦透射
    [15]单层CP单个频点偏折、聚焦反射/透射
    [17]二层LP/CP单个频点透射、涡旋、聚焦透射
    五层LP13.7%涡旋、聚焦反射/透射
    [26]二层CP两个频点偏折、涡旋、聚焦透射
    本文单层LP/CP120%偏折、涡旋反射/透射
    下载: 导出CSV
    Baidu
  • [1]

    郝宏刚, 冉雪红, 郑森, 唐逸豪, 阮巍 2022 电子与信息学报 44 114284741Google Scholar

    Hao H G, Ran X H, Zheng S, Tang Y H, Ruan W 2022 J. Electron. Inform. Technol. 44 114284741Google Scholar

    [2]

    刘靖宇, 李文宇, 刘智星, 舒敬懿, 赵国忠 2022 71 230701Google Scholar

    Liu J Y, Li W Y, Liu Z X, Shu J Y, Zhao G Z 2022 Acta Phys. Sin. 71 230701Google Scholar

    [3]

    王俊瑶, 樊俊鹏, 舒好, 刘畅, 程用志 2021 光电工程 48 200319Google Scholar

    Wang J Y, Fan J P, Shu H, Liu C, Cheng Y Z 2021 Opto-Electronic Eng. 48 200319Google Scholar

    [4]

    Fan J P, Cheng Y Z 2020 J. Phys. D. Appl. Phys. 53 025109Google Scholar

    [5]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 33Google Scholar

    [6]

    He B, Liu J Q, Cheng Y Z, Chen F, Luo H, Li X C 2022 Physica E 144 115373Google Scholar

    [7]

    李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓 2021 70 188701Google Scholar

    Li G Q, Shi H Y, Liu K, Li B L, Yi J J, Zhang A X, Xu Z 2021 Acta Phys. Sin. 70 188701Google Scholar

    [8]

    周璐, 赵国忠, 李晓楠 2019 68 108701Google Scholar

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar

    [9]

    Li N, Zhao J, Tang P, Cheng Y 2023 Phys. Status Solidi B 5 2300104

    [10]

    Cheng Y Z, Qian Y J, Luo H, Chen F, Cheng Z 2023 Physica E 146 115527Google Scholar

    [11]

    Liu M, Huo P, Zhu W, Zhang C, Zhang S, Song M, Zhang S, Zhou Q, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T 2021 Nat. Commun. 12 2230Google Scholar

    [12]

    Hou H S, Wang G M, Li H P, Guo W L, Cai T 2020 Opt. Express 19 27575

    [13]

    Zhu X Z, Cheng Y Z, Chen F, Luo H, Ling W 2022 J. Opt. Soc. Am. B 39 705Google Scholar

    [14]

    Cai T, Wang G M, Tang S W, Xu H X, Duan J W, Guo H J, Guan F X, Sun S L, He Q, Zhou L 2017 Phys. Rev. Appl. 8 034033Google Scholar

    [15]

    Wu R Y, Zhang L, Bao L, Wu L W, Ma Q, Bai G D, Wu H T, Cui T J 2019 Adv. Optical Mater. 7 1801429Google Scholar

    [16]

    Fan J P, Cheng Y Z, He B 2021 J. Phys. D. Appl. Phys. 54 115101Google Scholar

    [17]

    Li J, Cheng Y Z, Li X C 2022 Adv. Theor. Simul. 5 2200151Google Scholar

    [18]

    Zhang C B, Wang G M, Xu H X, Zhang X, Li H P 2020 Adv. Opt. Mater. 8 1901719Google Scholar

    [19]

    Zhang H C, Zhang X, Ma X L, Pu M B, Huang C, Zhang Z J, Wang Y X, Guo Y H, Luo J, Luo X G 2022 Opt. Express 30 36949Google Scholar

    [20]

    Mao R Q, Wang G M, Cai T, Liu K, Wang D P, Wu B 2020 Opt. Express 21 31216

    [21]

    Yang D R, Cheng Y Z, Luo H, Chen F, Wu, 2023 Adv. Theor. Simul. 4 2300162

    [22]

    Zhao J, Li N, Cheng Y 2023 Opt. Commun. 536 129372Google Scholar

    [23]

    Zhao Y, Alù A 2011 Phys. Rev. B 84 205428Google Scholar

    [24]

    Yang L J, Li J S 2022 Opt. Eng. 61 047105

    [25]

    Liu J Q, Cheng Y Z, Chen F, Luo H, Li X C 2023 J. Opt. Soc. Am. B 40 441Google Scholar

    [26]

    刘佳琪, 程用志, 陈浮, 罗辉, 李享成 2023 红外与激光工程 52 20220377Google Scholar

    Liu J Q, Cheng Y Z, Chen F, Luo H 2023 Infrared Laser Engineer. 52 20220377Google Scholar

  • [1] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面.  , 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [2] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性.  , 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现.  , 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [4] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面.  , 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [5] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生.  , 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [6] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法.  , 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [7] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置.  , 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [8] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] 张建柱, 张飞舟, 苏华, 胡鹏, 谢晓钢, 罗文. 强激光上行大气传输热晕效应导致的光束偏折研究.  , 2021, 70(24): 244202. doi: 10.7498/aps.70.20211138
    [10] 田博宇, 钟哲强, 隋展, 张彬, 袁孝. 基于涡旋光束的超快速角向集束匀滑方案.  , 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [11] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [12] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生.  , 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [13] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波.  , 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [14] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面.  , 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [15] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器.  , 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [16] 张进, 周新星, 罗海陆, 文双春. 涡旋光束在反射中的正交偏振特性研究.  , 2013, 62(17): 174202. doi: 10.7498/aps.62.174202
    [17] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究.  , 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [18] 李阳月, 陈子阳, 刘辉, 蒲继雄. 涡旋光束的产生与干涉.  , 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [19] 漆云凤, 刘驰, 周军, 陈卫标, 董景星, 魏运荣, 楼祺洪. 128 W单频线偏振光纤放大器特性研究.  , 2010, 59(6): 3942-3947. doi: 10.7498/aps.59.3942
    [20] 康小平, 吕百达. 非傍轴矢量拉盖尔-高斯光束的二阶矩表示.  , 2006, 55(9): 4563-4568. doi: 10.7498/aps.55.4563
计量
  • 文章访问数:  3399
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-05-23
  • 上网日期:  2023-06-02
  • 刊出日期:  2023-08-05

/

返回文章
返回
Baidu
map