-
以氮化镓(GaN)为代表的第三代半导体正促使着固态微波功率器件向着更高功率、更高效率、集成化的方向不断发展, 但这会导致器件内部电磁场分布效应更为显著, 单一的路仿真已无法满足分析设计的精度需求, 亟需建立有源GaN器件与无源电磁结构的一体化协同仿真技术. 针对这一需求, 本文提出基于时域不连续伽辽金技术的GaN基高功率微波器件高效场路协同仿真方法, 将所提取的GaN HEMT (high electron mobility transistor)器件大信号紧凑模型引入电磁场方程中, 采用局部时间步进技术以消除非线性紧凑模型及多尺度网格对全局算法稳定性条件的限制, 实现有源器件-无源电磁结构、多尺度粗细网格的高效自适应求解. 通过数值仿真算例与实验测试及软件计算结果对比展示了本文所提方法准确性和高效性, 可为先进大功率微波器件的高可靠研发提供理论基础与设计参考.
-
关键词:
- GaN功率器件 /
- 大信号等效拓扑模型 /
- 场路协同仿真技术 /
- 时域不连续伽辽金方法
Due to the development of the third-generation semiconductors representative of gallium nitride (GaN), the microwave power devices are developing towards higher power, higher efficiency and high integration. However, the electromagnetic field effects are more significant inside the device. As a result, circuit-level based simulation techniques can no longer satisfy the accuracy requirements of device design. Therefore it is necessary to urgently establish the field-circuit co-simulation techniques to couple the active GaN devices with passive electromagnetic structures. In this work, we propose a high-precision discontinuous Galerkin time-domain method to analyze the performances of GAN-based high-power microwave devices. The extracted large-signal compact model of the GaN HEMT is incorporated into the electromagnetic field equations. A local time-stepping technique is adopted to remove the constraints of nonlinear compact models and multiscale elements on the stability conditions of the global algorithm. The comparisons among numerical simulations, experimental results, and software calculations demonstrate the excellent accuracy and efficiency of the proposed method, which can provide a theoretical analysis and design tool for the high reliability design of advanced high-power microwave devices.-
Keywords:
- GaN power devices /
- large signal equivalent topology model /
- field-circuit co-simulation technique /
- time-domain discontinuous Galerkin method
[1] 郝跃 2019 科技导报 37 58
Hao Y 2019 Sci. Technol. Rev. 37 58
[2] Riddle A 2008 IEEE Microwave Mag. 9 154Google Scholar
[3] Zhang X Y, Yang L A, Hu X L, Yang W L, Liu Y C, Li Y, Ma X H, Hao Y 2022 IEEE Trans. Electron Devices 69 1006Google Scholar
[4] Prasad A, Thorsell M, Zirath H, Fager C 2018 IEEE Trans. Microwave Theory Tech. 66 845Google Scholar
[5] Wang Y, Wu Q Z, Yan B, Xu R M, Xu Y H 2022 IEEE Trans. Microwave Theory Tech. 70 315Google Scholar
[6] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃 2012 61 047301Google Scholar
Ma J G, Ma X H, Zhang H L, Cao M Y, Zhang K, Li W W, Guo X, Liao X Y, Chen W W, Hao Y 2012 Acta Phys. Sin. 61 047301Google Scholar
[7] Angelov I, Andersson K, Schreurs D, Xiao D, Rorsman N, Desmaris V, Sudow M, Zirath H 2006 2006 Asia-Pacific Microwave Conference Yokohama, Japan, December 12–15, 2006 p1699
[8] Schwantuschke D, Seelmann E M, Bruckner P, Quay R, Kallfass I 2013 2013 European Microwave Integrated Circuit Conference Nuremberg, Germany, Oct 6–8, 2013 p284
[9] Jardel O, Groote F D, Reveyrand T, Jacquet J C, Charbonniaud C, Teyssier J P, Floriot D, Quere R 2007 IEEE Trans. Microwave Theory Tech. 55 2660Google Scholar
[10] Yuk K S, Branner G R, McQuate D J 2009 IEEE Trans. Microwave Theory Tech. 57 3322Google Scholar
[11] Luo X B, Yu W H, Lü X, Lü Y J, Dun S B, Feng Z H 2014 IEICE Electron. Express 11 20140613Google Scholar
[12] Wu Q Z, Xu Y H, Chen Y B, Wang Y, Fu W L, Yan B, Xu R M 2018 IEEE Trans. Microwave Theory Tech. 66 1192Google Scholar
[13] Zhao Z, Zhang L, Feng F, ZHang W, Zhang Q J 2020 IEEE Trans. Microwave Theory Tech. 68 3318Google Scholar
[14] Sui W Q, Christensen D A, Durney C H 1992 IEEE Trans. Microwave Theory Tech. 40 724Google Scholar
[15] Chen S T, Ding D Z, Chen R S 2017 IEEE Antennas Wirel. Propag. Lett. 16 3034Google Scholar
[16] Tian C Y, Shi Y, Shum K M, Chan C H 2020 IEEE Trans. Antennas Propag. 68 3026Google Scholar
[17] Kuo C N, Wu R B, Houshband B, Qian Y, Itoh T 1996 IEEE Trans. Microwave Guided Wave Lett. 6 199Google Scholar
[18] Ma K P, Vhen M, Houshband B, Qian Y, Itoh T 1999 IEEE Trans. Microwave Theory Tech. 47 859Google Scholar
[19] Gonzalez O, Pereda J A, Herrera A, Vegas A 2006 IEEE Trans. Microwave Theory Tech. 54 3045Google Scholar
[20] Bao H G, Chen R S 2017 IEEE Trans. Antennas Propag. 65 1490Google Scholar
[21] Bagci H, Yilmaz A E, Jin J M, Michielssen E 2007 IEEE Trans. Electromagn. Compat. 49 361Google Scholar
[22] Chen S T, Ding D Z, Fan Z H, Chen R S 2018 IEEE Microwave Wireless Compon. Lett. 28 431Google Scholar
[23] Lee J H, Liu Q H 2007 IEEE Trans. Microwave Theory Tech. 55 983Google Scholar
[24] Ren Q, Bian Y, Kang L, Werner P L, Werner D H 2017 J. Lightwave Technol. 35 4888Google Scholar
[25] Li P, Jiang L J 2013 IEEE Trans. Microwave Theory Tech. 61 2525Google Scholar
[26] Zhang T, Bao H G, Gu P F, Ding D Z, Werner D H, Chen R S 2022 IEEE Trans. Antennas Propag. 70 526Google Scholar
[27] Gao J J, Werthof A 2009 IEEE Trans. Microwave Theory Tech. 57 737Google Scholar
[28] Wen Z, Xu Y H, Wang C S, Zhao X D, Xu R M 2017 Int. J. Numer. Model. Electron. Networks Devices Fields 30 e2127Google Scholar
[29] 闻彰 2018 博士学位论文 (成都: 电子科技大学)
Wen Z 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[30] Zhang H H, Wang P P, Zhang S, Li L, Sha W E I, Jiang L J 2020 Prog. Electromagn. Res. 169 87Google Scholar
[31] Grote M J, Mehlin M, Mitkova T 2015 SIAM J. Sci. Comput. 37 A747Google Scholar
[32] Cui X, Yang F, Gao M 2018 IET Microwaves Antennas Propag. 12 963Google Scholar
[33] Schomann S, Godel N, Warburton T, Clemens M 2020 IEEE Trans. Magn. 46 3504
[34] Wang R, Jin J M 2011 IEEE Trans. Adv. Packag. 33 769
-
表 1 GaN HEMT的寄生参数
Table 1. The parasitic parameters of GaN HEMT.
Cpga/fF Cpda/fF Cgda/fF Cpgi/fF Cpdi/fF Cgdi/fF 99.15 4.43 4.61 548.4 31.16 0.74 Rg/Ω Rd/Ω Rs/Ω Lg/pH Ld/pH Ls/pH 0.256 8.846 0.72 65.07 38.72 11.98 表 2 GaN HEMT大信号模型的非线性电流参数
Table 2. Nonlinear circuit parameters of large signal model for GaN HEMT.
K10 K11 K20 K21 K30 K31 Vpk1 Vpk2 Vpk3 $ {\alpha _1} $ –1.09633 –0.285951 –4.01665×10–2 –9.8227×10–3 –1.99307×10–2 2.25872×10–3 8.3227 15.3274 –0.737977 3.0232 $ {\alpha _2} $ $ {\alpha _3} $ $ \alpha $ gm Vgsm Kp1 Kp2 Kp3 Mipk1 KM 2.65394 3.27743 0.643925 0.992594 0.436392 7.346×10–4 7.28773×10–2 1.31013×10–2 0.532239 –1.06691 Ipkth Rth Vdsq Vgsq γsurf γsubs Vdssubs Vgsqpinch 0.215471 0.10027 1.3846 –3.21923 –1.5589 9.24381×10–3 –0.912853 –2.7 表 3 GaN HEMT大信号模型的栅电容参数
Table 3. Grid capacitance parameters of large signal model for GaN HEMT.
Cgsp Cgs0 P10 P11 P20 P21 0.0867 0.1765 11.38 4.512 0.1422 0.01703 Cgdp Cgd0 P30 P31 P40 P41 0.02654 0.8327 0.1615 0.03217 –1.31 0.01814 表 4 计算时间比较
Table 4. Comparison of simulation time.
方法 离散单元数 采样间隔 计算耗时/s ADS-版图仿真 1644 $\Delta f$ = 12.13 MHz 142.26 共形网格DGTD 2350 $\Delta t$ = 0.286 fs 687.69 非共形网格DGTD 768 $\Delta t$ = 0.286 fs 236.47 非共形网格LTS-DGTD 768 $\Delta {t_{\text{l}}}$ = 0.572 fs, $\Delta {t_{\text{s}}}$ = 0.286 fs 131.67 表 5 计算时间比较
Table 5. Comparison of simulation time.
方法 离散单元数 采样间隔 计算耗时/s ADS-版图仿真 1466 $\Delta f$ = 1.41 MHz 946.79 共形网格DGTD 3920 $\Delta t$ = 0.067 fs 3303.41 非共形网格DGTD 947 $\Delta t$ = 0.067 fs 1846.54 非共形网格LTS-DGTD 947 $\Delta {t_{\text{l}}}$ = 0.266 fs, $\Delta {t_{\text{s}}}$ = 0.067 fs 621.77 -
[1] 郝跃 2019 科技导报 37 58
Hao Y 2019 Sci. Technol. Rev. 37 58
[2] Riddle A 2008 IEEE Microwave Mag. 9 154Google Scholar
[3] Zhang X Y, Yang L A, Hu X L, Yang W L, Liu Y C, Li Y, Ma X H, Hao Y 2022 IEEE Trans. Electron Devices 69 1006Google Scholar
[4] Prasad A, Thorsell M, Zirath H, Fager C 2018 IEEE Trans. Microwave Theory Tech. 66 845Google Scholar
[5] Wang Y, Wu Q Z, Yan B, Xu R M, Xu Y H 2022 IEEE Trans. Microwave Theory Tech. 70 315Google Scholar
[6] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃 2012 61 047301Google Scholar
Ma J G, Ma X H, Zhang H L, Cao M Y, Zhang K, Li W W, Guo X, Liao X Y, Chen W W, Hao Y 2012 Acta Phys. Sin. 61 047301Google Scholar
[7] Angelov I, Andersson K, Schreurs D, Xiao D, Rorsman N, Desmaris V, Sudow M, Zirath H 2006 2006 Asia-Pacific Microwave Conference Yokohama, Japan, December 12–15, 2006 p1699
[8] Schwantuschke D, Seelmann E M, Bruckner P, Quay R, Kallfass I 2013 2013 European Microwave Integrated Circuit Conference Nuremberg, Germany, Oct 6–8, 2013 p284
[9] Jardel O, Groote F D, Reveyrand T, Jacquet J C, Charbonniaud C, Teyssier J P, Floriot D, Quere R 2007 IEEE Trans. Microwave Theory Tech. 55 2660Google Scholar
[10] Yuk K S, Branner G R, McQuate D J 2009 IEEE Trans. Microwave Theory Tech. 57 3322Google Scholar
[11] Luo X B, Yu W H, Lü X, Lü Y J, Dun S B, Feng Z H 2014 IEICE Electron. Express 11 20140613Google Scholar
[12] Wu Q Z, Xu Y H, Chen Y B, Wang Y, Fu W L, Yan B, Xu R M 2018 IEEE Trans. Microwave Theory Tech. 66 1192Google Scholar
[13] Zhao Z, Zhang L, Feng F, ZHang W, Zhang Q J 2020 IEEE Trans. Microwave Theory Tech. 68 3318Google Scholar
[14] Sui W Q, Christensen D A, Durney C H 1992 IEEE Trans. Microwave Theory Tech. 40 724Google Scholar
[15] Chen S T, Ding D Z, Chen R S 2017 IEEE Antennas Wirel. Propag. Lett. 16 3034Google Scholar
[16] Tian C Y, Shi Y, Shum K M, Chan C H 2020 IEEE Trans. Antennas Propag. 68 3026Google Scholar
[17] Kuo C N, Wu R B, Houshband B, Qian Y, Itoh T 1996 IEEE Trans. Microwave Guided Wave Lett. 6 199Google Scholar
[18] Ma K P, Vhen M, Houshband B, Qian Y, Itoh T 1999 IEEE Trans. Microwave Theory Tech. 47 859Google Scholar
[19] Gonzalez O, Pereda J A, Herrera A, Vegas A 2006 IEEE Trans. Microwave Theory Tech. 54 3045Google Scholar
[20] Bao H G, Chen R S 2017 IEEE Trans. Antennas Propag. 65 1490Google Scholar
[21] Bagci H, Yilmaz A E, Jin J M, Michielssen E 2007 IEEE Trans. Electromagn. Compat. 49 361Google Scholar
[22] Chen S T, Ding D Z, Fan Z H, Chen R S 2018 IEEE Microwave Wireless Compon. Lett. 28 431Google Scholar
[23] Lee J H, Liu Q H 2007 IEEE Trans. Microwave Theory Tech. 55 983Google Scholar
[24] Ren Q, Bian Y, Kang L, Werner P L, Werner D H 2017 J. Lightwave Technol. 35 4888Google Scholar
[25] Li P, Jiang L J 2013 IEEE Trans. Microwave Theory Tech. 61 2525Google Scholar
[26] Zhang T, Bao H G, Gu P F, Ding D Z, Werner D H, Chen R S 2022 IEEE Trans. Antennas Propag. 70 526Google Scholar
[27] Gao J J, Werthof A 2009 IEEE Trans. Microwave Theory Tech. 57 737Google Scholar
[28] Wen Z, Xu Y H, Wang C S, Zhao X D, Xu R M 2017 Int. J. Numer. Model. Electron. Networks Devices Fields 30 e2127Google Scholar
[29] 闻彰 2018 博士学位论文 (成都: 电子科技大学)
Wen Z 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[30] Zhang H H, Wang P P, Zhang S, Li L, Sha W E I, Jiang L J 2020 Prog. Electromagn. Res. 169 87Google Scholar
[31] Grote M J, Mehlin M, Mitkova T 2015 SIAM J. Sci. Comput. 37 A747Google Scholar
[32] Cui X, Yang F, Gao M 2018 IET Microwaves Antennas Propag. 12 963Google Scholar
[33] Schomann S, Godel N, Warburton T, Clemens M 2020 IEEE Trans. Magn. 46 3504
[34] Wang R, Jin J M 2011 IEEE Trans. Adv. Packag. 33 769
计量
- 文章访问数: 4010
- PDF下载量: 106
- 被引次数: 0