搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多晶金刚石对硅基氮化镓材料的影响

刘庆彬 蔚翠 郭建超 马孟宇 何泽召 周闯杰 高学栋 余浩 冯志红

引用本文:
Citation:

多晶金刚石对硅基氮化镓材料的影响

刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红

Influence of polycrystalline diamond on silicon-based GaN material

Liu Qing-Bin, Yu Cui, Guo Jian-Chao, Ma Meng-Yu, He Ze-Zhao, Zhou Chuang-Jie, Gao Xue-Dong, Yu Hao, Feng Zhi-Hong
PDF
HTML
导出引用
  • 氮化镓(GaN)器件的自热问题是目前限制其性能的关键因素, 在GaN材料上直接生长多晶金刚石改善器件的自热问题成为研究的热点, 多晶金刚石距离GaN器件工作有源区近, 散热效率高, 但多晶金刚石和GaN材料热失配可能会导致GaN电特性衰退. 本文采用微波等离子体化学气相沉积法, 在2 in (1 in = 2.54 cm)Si基GaN材料上生长多晶金刚石. 测试结果显示, 多晶金刚石整体均匀一致, 生长金刚石厚度为9—81 μm, 随着多晶金刚石厚度的增大, GaN (002)衍射峰半高宽增量和电性能衰退逐渐增大. 通过激光切割和酸法腐蚀, 将Si基GaN材料从多晶金刚石上完整地剥离下来. 测试结果表明: 金刚石高温生长过程中, 氢原子对氮化硅外延层缺陷位置有刻蚀作用形成孔洞区域, 刻蚀深度可达本征GaN层; 在降温过程, 孔洞周围形成裂纹区域. 剥离下来的Si基GaN材料拉曼特征峰峰位, XRD的(002)衍射峰半高宽以及电性能均恢复到本征状态, 说明多晶金刚石与Si基GaN热失配产生应力, 引起GaN晶格畸变, 导致GaN材料电特性衰退, 这种变化具有可恢复性, 而非破坏性.
    Self-heating has become a limited factor for the performance improvement of GaN electronics. Growing polycrystalline diamond directly on GaN material to solve the heating problem of GaN devices has become one of the research highlights. Polycrystalline diamond on Si-based GaN material has the advantages of being close to the channel region and high heat dissipation efficiency. However, there is a problem that the thermal expansion mismatch between polycrystalline diamond and GaN material leads to the deterioration of electrical characteristics of GaN. In this work, we adopt microwave plasma chemical vapor deposition (MPCVD) method to grow polycrystalline diamond on 2-inch Si-based GaN material. The test results show that the polycrystalline diamond is uniform as a whole. The average thickness is in the range of 9–81 μm. With the thickness of polycrystalline diamond increasing, the XRD (002) diffraction peak FWHM increment and mobility loss gradually increase for the Si-based GaN material. Through laser cutting and acid etching, the Si-based GaN material is successfully stripped from the polycrystalline diamond. It is found that during the process of diamond growth at high temperature, hydrogen atoms etch the defect positions of the silicon nitride epitaxial layer, forming a hole area in the GaN, and the etching depth can reach the intrinsic GaN layer. During the process of cooling, a crack area is formed around the hole area. Raman characteristic peaks, full widths at half maximum of XRD (002) diffraction peaks, and electrical properties of the stripped Si-based GaN materials are all returned to their intrinsic states. The above results show that the thermal expansion mismatch between polycrystalline diamond and Si-based GaN introduces stress into GaN, which leads to lattice distortion of GaN lattice and the degradation of electrical property of GaN material. The degradation of GaN material is recoverable, but not destructive.
      通信作者: 蔚翠, yucui1@163.com ; 冯志红, ga917vv@163.com
    • 基金项目: 国家重点研发计划(批准号: 2018YFE0125900)和国家重点科学技术研究专项(批准号: 2009ZYHW0015) 资助的课题.
      Corresponding author: Yu Cui, yucui1@163.com ; Feng Zhi-Hong, ga917vv@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFE0125900) and the National Key Science and Technology Special Project, China (Grant No. 2009ZYHW0015).
    [1]

    EI Fatimy A, Dyakonova N, Meziani Y, Otsuji T, Knap W, Vandenbrouk S, Madjour K, Théron D, Gaquiere C, Poisson M A, Delage S, Prystawko P, Skierbiszewski C 2010 J. Appl. Phys. 107 024504Google Scholar

    [2]

    Marti D, Tirelli S, Alt A R, Roberts J, Bolognesi C R 2012 IEEE Electron Dev. Lett. 33 1372Google Scholar

    [3]

    Nazari M, Hancock B L, Piner E L, Holtz M W 2015 IEEE Compd. Semicond. Integr. Circuit Symp. 62 1467Google Scholar

    [4]

    Coe S E, Sussmann R S 2000 Diamond Relat. Mater. 9 1726Google Scholar

    [5]

    Alomari M, Dipalo M, Rossi S, Diforte-Poisson M A, Delage S, Carlin J F, Grandjean N, Gaquiere C, Toth L, Pecz B, Kohn E 2011 Diamond Relat. Mater. 20 604Google Scholar

    [6]

    Altman D, Tyhach M, McClymonds J, Kim S, Graham S 2014 Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) Orlando, USA, May 27–30, 2014 p1199

    [7]

    Anderson T J, Hobart K D, Tadjer M J, Koehler A D, Imhoff E A, Hite J K, Feygelson T I, Pate B B, Eddy Jr C R, Kub F J 2017 ECS J. Solid State Sci. Technol. 6 Q3036Google Scholar

    [8]

    Hancock B L, Nazari M, Anderson J, Piner E, Faili F, Oh S, Twitchen D, Graham S, Holtz M 2016 Appl. Phys. Lett. 108 211901Google Scholar

    [9]

    Zhou Y, Ramaneti R, Anaya J, Korneychuk S, Derluyn J, Sun H, Pomeroy J, Verbeeck J, Haenen K, Kubal M 2017 Appl. Phys. Lett. 111 041901Google Scholar

    [10]

    Ahmed R, Siddique A, Anderson J, Engdahl C, Holtz M, Piner E 2019 Cryst. Growth Des. 19 672Google Scholar

    [11]

    Siddique A, Ahmed R, Anderson J, Nazari M, Yates L, Graham S, Holtz M, Piner E L 2019 ACS Appl. Electron. Mater. 1 1387Google Scholar

    [12]

    Malakoutian M, Ren C H, Woo K, Li H, Chowdhury S 2021 Cryst. Growth Des. 21 2624Google Scholar

    [13]

    杨士奇, 任泽阳, 张金风, 何琦, 苏凯, 张进成, 郭怀新, 郝跃 2021 固体电子学研究与进展 41 18Google Scholar

    Yang S Q, Ren Z Y, Zhang J F, He Q, Su K, Zhang J C, Guo H X, Hao Y 2021 Res. Prog. SSE 41 18Google Scholar

    [14]

    Wang A, Tadjer M J, Anderson T J, Baranyai R, Pomer J W 2013 IEEE Trans. Electron Dev. 60 3149Google Scholar

    [15]

    Tadjer M J, Anderson T J, Hobart K D, Mastro M A, Hite J K, Caldwell J D, Picard Y N, Kub F J, Eddy Jr C R 2010 Electron. Mater. 39 2452Google Scholar

    [16]

    Sun H, Simon R B P, Pomeroy J W, Francis D, Faili F, Twitchen D J, Kuball M 2015 Appl. Phys. Lett. 106 111906Google Scholar

    [17]

    Teng Y, Liu D Y, Tang K, Zhao W K, Chen Z A, Huang Y M, Duan J J, Bian Y, Ye J D, Zhu S M, Zhang R, Zheng Y D, Gu S M 2022 Chin. Phys. B 31 128106Google Scholar

    [18]

    李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃 2023 72 038102Google Scholar

    Li J P, Ren Z Y, Zhang J F, Wang H X, Ma Y C, Fei Y F, Huang S Y, Ding S C, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 038102Google Scholar

    [19]

    Sein H, Ahmed W, Jackson M, Ali N, Gracio J 2003 Surf. Coat. Tech. 163 196Google Scholar

    [20]

    Xie W L, Lv X Y, Wang Q L, Li L A, Zou G T 2022 Chin. Phys. B 31 108106Google Scholar

    [21]

    Letts E, Key D, Hashimoto T 2016 J. Cryst. Growth 456 27Google Scholar

    [22]

    Davis R F, Gehrke T, Linthicum K J, Preble E, Rajagopal P, Ronning C, Zorman C, Mehregany M 2001 J. Cryst. Growth 231 335Google Scholar

    [23]

    Dadgar A, Schulze F, Wienecke M, Gadanecz A, Bläsing J, Veit P, Hempel T, Diez A, Christen J, Krost A 2007 New J. Phys. 9 389Google Scholar

    [24]

    Kumar M S, Kumar J 2003 Mater. Chem. Phys. 77 341Google Scholar

    [25]

    Sochacki T, Bryan Z, Amilusik M, Collazo R, Lucznik B, Weyher J L, Nowak G, Sadovyi B, Kamler G, Kucharski R 2013 Appl. Phys. Express 6 075504Google Scholar

    [26]

    Ahmed R, Siddique A, Anderson J, Gautam C, Holtz M, Piner E 2020 ACS Appl. Mater. Interfaces 12 39397Google Scholar

    [27]

    Cuenca J A, Smith M D, Field D E, Massabuau F C-P, Mandal S, Pomeroy J, Wallis D J, Oliver R A, Thayne I, Kuball M, Williams O A 2021 Carbon 174 647Google Scholar

    [28]

    Kisielowski C, Krüger J, Ruvimov S, Suski T, Ager J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D, Davis R F 1996 Phys. Rev. B Condens. Matter Mater. Phys. 54 17745Google Scholar

    [29]

    Kang B S, Kim S, Kim J, Ren F, Baik K, Pearton S J, Gila B P, Abernathy C R, Pan C C, Chen G T, Chyi J I, Chandrasekaran V, Sheplak M, Nishida T, Chu S N G 2003 Appl. Phys. Lett. 83 4845Google Scholar

    [30]

    Vanko G, Drzik M, Vallo M, Lalinsky T, Kutis V, Stancik S, Ryger I, Bencurova A 2011 Sens. Actuators A Phys. 172 1Google Scholar

    [31]

    Liu Y, Ruden P P, Xie J, Morkoc H, Son K A 2006 Appl. Phys. Lett. 88 013505Google Scholar

    [32]

    Azize M, Palacios T 2010 J. Appl. Phys. 108 023707Google Scholar

    [33]

    Jeon C M, Lee J L 2005 Appl. Phys. Lett. 86 172101Google Scholar

  • 图 1  (a) SiNx外延层表面AFM照片; (b) 2英寸Si基GaN生长多晶金刚石#3样品照片; (c)—(e) 3个多晶金刚石样品OM照片

    Fig. 1.  (a) AFM image of SiNx epitaxial layer surface; (b) photo of sample #3 of polycrystalline diamond on 2-inch Si-based GaN material; (c)–(e) OM images of three polycrystalline diamond samples.

    图 2  3个多晶金刚石样品Raman测试结果

    Fig. 2.  Raman results of three polycrystalline diamond samples.

    图 3  多晶金刚石厚度和XRD FWHM002增量统计结果

    Fig. 3.  Statistical results of polycrystalline diamond thickness and XRD FWHM002 increment.

    图 4  多晶金刚石厚度和GaN电性能衰退统计结果

    Fig. 4.  Statistical results of polycrystalline diamond thickness and mobility loss of GaN.

    图 5  酸腐蚀后的Si基GaN材料表面SEM测试结果 (a) 放大1000倍; (b) 放大20000倍

    Fig. 5.  SEM measurement results of the surface of Si-based GaN material after acid etching: (a) Magnified 1000 times; (b) magnified 20000 times.

    图 6  酸腐蚀后的Si基GaN材料表面3种区域EDS测试结果 (a) 平坦区域; (b) 裂纹区域; (c) 孔洞区域

    Fig. 6.  EDS results of three regions on the surface of Si-based GaN material after acid etching: (a) Flat region; (b) crack region; (c) hole region.

    图 7  Si基GaN材料结构示意图

    Fig. 7.  Schematic diagram of sample structure of Si-based GaN material.

    表 1  #3样品生长金刚石前/后、与金刚石剥离后的Raman, XRD和非接触霍尔测试结果

    Table 1.  Raman, XRD and Hall results for the #3 sample with the state of GaN/Si, Diamond/GaN/Si, and Exfoliated-GaN/Si.

    测试参量GaN/SiDiamond/GaN/SiExfoliated-GaN/Si
    GaN peak/cm–1568.1567.8568.1
    FWHM002/arcsec550654530
    μ/(cm2·V–1·s–1)1588.81178.21583.8
    Ns/(electron, 1012 cm–2)9.20812.928.803
    Rs/(Ω·square–1)391.8370.8418.5
    下载: 导出CSV
    Baidu
  • [1]

    EI Fatimy A, Dyakonova N, Meziani Y, Otsuji T, Knap W, Vandenbrouk S, Madjour K, Théron D, Gaquiere C, Poisson M A, Delage S, Prystawko P, Skierbiszewski C 2010 J. Appl. Phys. 107 024504Google Scholar

    [2]

    Marti D, Tirelli S, Alt A R, Roberts J, Bolognesi C R 2012 IEEE Electron Dev. Lett. 33 1372Google Scholar

    [3]

    Nazari M, Hancock B L, Piner E L, Holtz M W 2015 IEEE Compd. Semicond. Integr. Circuit Symp. 62 1467Google Scholar

    [4]

    Coe S E, Sussmann R S 2000 Diamond Relat. Mater. 9 1726Google Scholar

    [5]

    Alomari M, Dipalo M, Rossi S, Diforte-Poisson M A, Delage S, Carlin J F, Grandjean N, Gaquiere C, Toth L, Pecz B, Kohn E 2011 Diamond Relat. Mater. 20 604Google Scholar

    [6]

    Altman D, Tyhach M, McClymonds J, Kim S, Graham S 2014 Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) Orlando, USA, May 27–30, 2014 p1199

    [7]

    Anderson T J, Hobart K D, Tadjer M J, Koehler A D, Imhoff E A, Hite J K, Feygelson T I, Pate B B, Eddy Jr C R, Kub F J 2017 ECS J. Solid State Sci. Technol. 6 Q3036Google Scholar

    [8]

    Hancock B L, Nazari M, Anderson J, Piner E, Faili F, Oh S, Twitchen D, Graham S, Holtz M 2016 Appl. Phys. Lett. 108 211901Google Scholar

    [9]

    Zhou Y, Ramaneti R, Anaya J, Korneychuk S, Derluyn J, Sun H, Pomeroy J, Verbeeck J, Haenen K, Kubal M 2017 Appl. Phys. Lett. 111 041901Google Scholar

    [10]

    Ahmed R, Siddique A, Anderson J, Engdahl C, Holtz M, Piner E 2019 Cryst. Growth Des. 19 672Google Scholar

    [11]

    Siddique A, Ahmed R, Anderson J, Nazari M, Yates L, Graham S, Holtz M, Piner E L 2019 ACS Appl. Electron. Mater. 1 1387Google Scholar

    [12]

    Malakoutian M, Ren C H, Woo K, Li H, Chowdhury S 2021 Cryst. Growth Des. 21 2624Google Scholar

    [13]

    杨士奇, 任泽阳, 张金风, 何琦, 苏凯, 张进成, 郭怀新, 郝跃 2021 固体电子学研究与进展 41 18Google Scholar

    Yang S Q, Ren Z Y, Zhang J F, He Q, Su K, Zhang J C, Guo H X, Hao Y 2021 Res. Prog. SSE 41 18Google Scholar

    [14]

    Wang A, Tadjer M J, Anderson T J, Baranyai R, Pomer J W 2013 IEEE Trans. Electron Dev. 60 3149Google Scholar

    [15]

    Tadjer M J, Anderson T J, Hobart K D, Mastro M A, Hite J K, Caldwell J D, Picard Y N, Kub F J, Eddy Jr C R 2010 Electron. Mater. 39 2452Google Scholar

    [16]

    Sun H, Simon R B P, Pomeroy J W, Francis D, Faili F, Twitchen D J, Kuball M 2015 Appl. Phys. Lett. 106 111906Google Scholar

    [17]

    Teng Y, Liu D Y, Tang K, Zhao W K, Chen Z A, Huang Y M, Duan J J, Bian Y, Ye J D, Zhu S M, Zhang R, Zheng Y D, Gu S M 2022 Chin. Phys. B 31 128106Google Scholar

    [18]

    李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃 2023 72 038102Google Scholar

    Li J P, Ren Z Y, Zhang J F, Wang H X, Ma Y C, Fei Y F, Huang S Y, Ding S C, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 038102Google Scholar

    [19]

    Sein H, Ahmed W, Jackson M, Ali N, Gracio J 2003 Surf. Coat. Tech. 163 196Google Scholar

    [20]

    Xie W L, Lv X Y, Wang Q L, Li L A, Zou G T 2022 Chin. Phys. B 31 108106Google Scholar

    [21]

    Letts E, Key D, Hashimoto T 2016 J. Cryst. Growth 456 27Google Scholar

    [22]

    Davis R F, Gehrke T, Linthicum K J, Preble E, Rajagopal P, Ronning C, Zorman C, Mehregany M 2001 J. Cryst. Growth 231 335Google Scholar

    [23]

    Dadgar A, Schulze F, Wienecke M, Gadanecz A, Bläsing J, Veit P, Hempel T, Diez A, Christen J, Krost A 2007 New J. Phys. 9 389Google Scholar

    [24]

    Kumar M S, Kumar J 2003 Mater. Chem. Phys. 77 341Google Scholar

    [25]

    Sochacki T, Bryan Z, Amilusik M, Collazo R, Lucznik B, Weyher J L, Nowak G, Sadovyi B, Kamler G, Kucharski R 2013 Appl. Phys. Express 6 075504Google Scholar

    [26]

    Ahmed R, Siddique A, Anderson J, Gautam C, Holtz M, Piner E 2020 ACS Appl. Mater. Interfaces 12 39397Google Scholar

    [27]

    Cuenca J A, Smith M D, Field D E, Massabuau F C-P, Mandal S, Pomeroy J, Wallis D J, Oliver R A, Thayne I, Kuball M, Williams O A 2021 Carbon 174 647Google Scholar

    [28]

    Kisielowski C, Krüger J, Ruvimov S, Suski T, Ager J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D, Davis R F 1996 Phys. Rev. B Condens. Matter Mater. Phys. 54 17745Google Scholar

    [29]

    Kang B S, Kim S, Kim J, Ren F, Baik K, Pearton S J, Gila B P, Abernathy C R, Pan C C, Chen G T, Chyi J I, Chandrasekaran V, Sheplak M, Nishida T, Chu S N G 2003 Appl. Phys. Lett. 83 4845Google Scholar

    [30]

    Vanko G, Drzik M, Vallo M, Lalinsky T, Kutis V, Stancik S, Ryger I, Bencurova A 2011 Sens. Actuators A Phys. 172 1Google Scholar

    [31]

    Liu Y, Ruden P P, Xie J, Morkoc H, Son K A 2006 Appl. Phys. Lett. 88 013505Google Scholar

    [32]

    Azize M, Palacios T 2010 J. Appl. Phys. 108 023707Google Scholar

    [33]

    Jeon C M, Lee J L 2005 Appl. Phys. Lett. 86 172101Google Scholar

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响.  , 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 马孟宇, 蔚翠, 何泽召, 郭建超, 刘庆彬, 冯志红. 氢终端金刚石薄膜生长及其表面结构.  , 2024, 73(8): 088101. doi: 10.7498/aps.73.20240053
    [3] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究.  , 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [4] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用.  , 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [5] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究.  , 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [6] 汤文辉, 刘邦武, 张柏诚, 李敏, 夏洋. 等离子增强原子层沉积低温生长GaN薄膜.  , 2017, 66(9): 098101. doi: 10.7498/aps.66.098101
    [7] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响.  , 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [8] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究.  , 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [9] 向军, 郭银涛, 周广振, 褚艳秋. 碱土和过渡金属掺杂NdAlO3导电陶瓷的制备、结构与电性能研究.  , 2012, 61(22): 227201. doi: 10.7498/aps.61.227201
    [10] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法.  , 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [11] 袁昌来, 刘心宇, 黄静月, 周昌荣, 许积文. Bi0.5Ba0.5FeO3 陶瓷的电性能及阻抗分析.  , 2011, 60(2): 025201. doi: 10.7498/aps.60.025201
    [12] 向军, 郭银涛, 褚艳秋, 周广振. 双掺杂的Sm0.9Sr0.1Al1-xCoxO3-δ钙钛矿结构导电陶瓷的制备及其电性能.  , 2011, 60(2): 027203. doi: 10.7498/aps.60.027203
    [13] 毛清华, 江风益, 程海英, 郑畅达. p-AlGaN电子阻挡层Al组分对Si衬底绿光LED性能影响的研究.  , 2010, 59(11): 8078-8082. doi: 10.7498/aps.59.8078
    [14] 江洋, 罗毅, 汪莱, 李洪涛, 席光义, 赵维, 韩彦军. 柱状与孔状图形衬底对MOVPE生长GaN体材料及LED器件的影响.  , 2009, 58(5): 3468-3473. doi: 10.7498/aps.58.3468
    [15] 李 彤, 王怀兵, 刘建平, 牛南辉, 张念国, 邢艳辉, 韩 军, 刘 莹, 高 国, 沈光地. Delta掺杂制备p-GaN薄膜及其电性能研究.  , 2007, 56(2): 1036-1040. doi: 10.7498/aps.56.1036
    [16] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究.  , 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [17] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究.  , 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [18] 方 鲲, 高善民, 邱海林, 曹传宝, 朱鹤孙. 立方相β-GaN纳米晶的气相化学反应制备研究.  , 2005, 54(5): 2267-2271. doi: 10.7498/aps.54.2267
    [19] 张永平, 顾有松, 高鸿钧, 张秀芳. 微波等离子体化学气相沉积法制备C3N4薄膜的结构研究.  , 2001, 50(7): 1396-1400. doi: 10.7498/aps.50.1396
    [20] 初宝进, 李国荣, 殷庆瑞, 张望重, 陈大任. 非化学计量和掺杂对(Na1/2Bi1/2)0.92Ba0.08TiO3陶瓷电性能的影响.  , 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
计量
  • 文章访问数:  3668
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-02-23
  • 上网日期:  2023-04-15
  • 刊出日期:  2023-05-05

/

返回文章
返回
Baidu
map