-
氮化镓(GaN)器件的自热问题是目前限制其性能的关键因素, 在GaN材料上直接生长多晶金刚石改善器件的自热问题成为研究的热点, 多晶金刚石距离GaN器件工作有源区近, 散热效率高, 但多晶金刚石和GaN材料热失配可能会导致GaN电特性衰退. 本文采用微波等离子体化学气相沉积法, 在2 in (1 in = 2.54 cm)Si基GaN材料上生长多晶金刚石. 测试结果显示, 多晶金刚石整体均匀一致, 生长金刚石厚度为9—81 μm, 随着多晶金刚石厚度的增大, GaN (002)衍射峰半高宽增量和电性能衰退逐渐增大. 通过激光切割和酸法腐蚀, 将Si基GaN材料从多晶金刚石上完整地剥离下来. 测试结果表明: 金刚石高温生长过程中, 氢原子对氮化硅外延层缺陷位置有刻蚀作用形成孔洞区域, 刻蚀深度可达本征GaN层; 在降温过程, 孔洞周围形成裂纹区域. 剥离下来的Si基GaN材料拉曼特征峰峰位, XRD的(002)衍射峰半高宽以及电性能均恢复到本征状态, 说明多晶金刚石与Si基GaN热失配产生应力, 引起GaN晶格畸变, 导致GaN材料电特性衰退, 这种变化具有可恢复性, 而非破坏性.
-
关键词:
- 多晶金刚石 /
- 氮化镓 /
- 微波等离子体化学气相沉积法 /
- 电性能
Self-heating has become a limited factor for the performance improvement of GaN electronics. Growing polycrystalline diamond directly on GaN material to solve the heating problem of GaN devices has become one of the research highlights. Polycrystalline diamond on Si-based GaN material has the advantages of being close to the channel region and high heat dissipation efficiency. However, there is a problem that the thermal expansion mismatch between polycrystalline diamond and GaN material leads to the deterioration of electrical characteristics of GaN. In this work, we adopt microwave plasma chemical vapor deposition (MPCVD) method to grow polycrystalline diamond on 2-inch Si-based GaN material. The test results show that the polycrystalline diamond is uniform as a whole. The average thickness is in the range of 9–81 μm. With the thickness of polycrystalline diamond increasing, the XRD (002) diffraction peak FWHM increment and mobility loss gradually increase for the Si-based GaN material. Through laser cutting and acid etching, the Si-based GaN material is successfully stripped from the polycrystalline diamond. It is found that during the process of diamond growth at high temperature, hydrogen atoms etch the defect positions of the silicon nitride epitaxial layer, forming a hole area in the GaN, and the etching depth can reach the intrinsic GaN layer. During the process of cooling, a crack area is formed around the hole area. Raman characteristic peaks, full widths at half maximum of XRD (002) diffraction peaks, and electrical properties of the stripped Si-based GaN materials are all returned to their intrinsic states. The above results show that the thermal expansion mismatch between polycrystalline diamond and Si-based GaN introduces stress into GaN, which leads to lattice distortion of GaN lattice and the degradation of electrical property of GaN material. The degradation of GaN material is recoverable, but not destructive.-
Keywords:
- polycrystalline diamond /
- GaN /
- microwave plasma chemical vapor deposition /
- electrical properties
[1] EI Fatimy A, Dyakonova N, Meziani Y, Otsuji T, Knap W, Vandenbrouk S, Madjour K, Théron D, Gaquiere C, Poisson M A, Delage S, Prystawko P, Skierbiszewski C 2010 J. Appl. Phys. 107 024504Google Scholar
[2] Marti D, Tirelli S, Alt A R, Roberts J, Bolognesi C R 2012 IEEE Electron Dev. Lett. 33 1372Google Scholar
[3] Nazari M, Hancock B L, Piner E L, Holtz M W 2015 IEEE Compd. Semicond. Integr. Circuit Symp. 62 1467Google Scholar
[4] Coe S E, Sussmann R S 2000 Diamond Relat. Mater. 9 1726Google Scholar
[5] Alomari M, Dipalo M, Rossi S, Diforte-Poisson M A, Delage S, Carlin J F, Grandjean N, Gaquiere C, Toth L, Pecz B, Kohn E 2011 Diamond Relat. Mater. 20 604Google Scholar
[6] Altman D, Tyhach M, McClymonds J, Kim S, Graham S 2014 Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) Orlando, USA, May 27–30, 2014 p1199
[7] Anderson T J, Hobart K D, Tadjer M J, Koehler A D, Imhoff E A, Hite J K, Feygelson T I, Pate B B, Eddy Jr C R, Kub F J 2017 ECS J. Solid State Sci. Technol. 6 Q3036Google Scholar
[8] Hancock B L, Nazari M, Anderson J, Piner E, Faili F, Oh S, Twitchen D, Graham S, Holtz M 2016 Appl. Phys. Lett. 108 211901Google Scholar
[9] Zhou Y, Ramaneti R, Anaya J, Korneychuk S, Derluyn J, Sun H, Pomeroy J, Verbeeck J, Haenen K, Kubal M 2017 Appl. Phys. Lett. 111 041901Google Scholar
[10] Ahmed R, Siddique A, Anderson J, Engdahl C, Holtz M, Piner E 2019 Cryst. Growth Des. 19 672Google Scholar
[11] Siddique A, Ahmed R, Anderson J, Nazari M, Yates L, Graham S, Holtz M, Piner E L 2019 ACS Appl. Electron. Mater. 1 1387Google Scholar
[12] Malakoutian M, Ren C H, Woo K, Li H, Chowdhury S 2021 Cryst. Growth Des. 21 2624Google Scholar
[13] 杨士奇, 任泽阳, 张金风, 何琦, 苏凯, 张进成, 郭怀新, 郝跃 2021 固体电子学研究与进展 41 18Google Scholar
Yang S Q, Ren Z Y, Zhang J F, He Q, Su K, Zhang J C, Guo H X, Hao Y 2021 Res. Prog. SSE 41 18Google Scholar
[14] Wang A, Tadjer M J, Anderson T J, Baranyai R, Pomer J W 2013 IEEE Trans. Electron Dev. 60 3149Google Scholar
[15] Tadjer M J, Anderson T J, Hobart K D, Mastro M A, Hite J K, Caldwell J D, Picard Y N, Kub F J, Eddy Jr C R 2010 Electron. Mater. 39 2452Google Scholar
[16] Sun H, Simon R B P, Pomeroy J W, Francis D, Faili F, Twitchen D J, Kuball M 2015 Appl. Phys. Lett. 106 111906Google Scholar
[17] Teng Y, Liu D Y, Tang K, Zhao W K, Chen Z A, Huang Y M, Duan J J, Bian Y, Ye J D, Zhu S M, Zhang R, Zheng Y D, Gu S M 2022 Chin. Phys. B 31 128106Google Scholar
[18] 李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃 2023 72 038102Google Scholar
Li J P, Ren Z Y, Zhang J F, Wang H X, Ma Y C, Fei Y F, Huang S Y, Ding S C, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 038102Google Scholar
[19] Sein H, Ahmed W, Jackson M, Ali N, Gracio J 2003 Surf. Coat. Tech. 163 196Google Scholar
[20] Xie W L, Lv X Y, Wang Q L, Li L A, Zou G T 2022 Chin. Phys. B 31 108106Google Scholar
[21] Letts E, Key D, Hashimoto T 2016 J. Cryst. Growth 456 27Google Scholar
[22] Davis R F, Gehrke T, Linthicum K J, Preble E, Rajagopal P, Ronning C, Zorman C, Mehregany M 2001 J. Cryst. Growth 231 335Google Scholar
[23] Dadgar A, Schulze F, Wienecke M, Gadanecz A, Bläsing J, Veit P, Hempel T, Diez A, Christen J, Krost A 2007 New J. Phys. 9 389Google Scholar
[24] Kumar M S, Kumar J 2003 Mater. Chem. Phys. 77 341Google Scholar
[25] Sochacki T, Bryan Z, Amilusik M, Collazo R, Lucznik B, Weyher J L, Nowak G, Sadovyi B, Kamler G, Kucharski R 2013 Appl. Phys. Express 6 075504Google Scholar
[26] Ahmed R, Siddique A, Anderson J, Gautam C, Holtz M, Piner E 2020 ACS Appl. Mater. Interfaces 12 39397Google Scholar
[27] Cuenca J A, Smith M D, Field D E, Massabuau F C-P, Mandal S, Pomeroy J, Wallis D J, Oliver R A, Thayne I, Kuball M, Williams O A 2021 Carbon 174 647Google Scholar
[28] Kisielowski C, Krüger J, Ruvimov S, Suski T, Ager J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D, Davis R F 1996 Phys. Rev. B Condens. Matter Mater. Phys. 54 17745Google Scholar
[29] Kang B S, Kim S, Kim J, Ren F, Baik K, Pearton S J, Gila B P, Abernathy C R, Pan C C, Chen G T, Chyi J I, Chandrasekaran V, Sheplak M, Nishida T, Chu S N G 2003 Appl. Phys. Lett. 83 4845Google Scholar
[30] Vanko G, Drzik M, Vallo M, Lalinsky T, Kutis V, Stancik S, Ryger I, Bencurova A 2011 Sens. Actuators A Phys. 172 1Google Scholar
[31] Liu Y, Ruden P P, Xie J, Morkoc H, Son K A 2006 Appl. Phys. Lett. 88 013505Google Scholar
[32] Azize M, Palacios T 2010 J. Appl. Phys. 108 023707Google Scholar
[33] Jeon C M, Lee J L 2005 Appl. Phys. Lett. 86 172101Google Scholar
-
表 1 #3样品生长金刚石前/后、与金刚石剥离后的Raman, XRD和非接触霍尔测试结果
Table 1. Raman, XRD and Hall results for the #3 sample with the state of GaN/Si, Diamond/GaN/Si, and Exfoliated-GaN/Si.
测试参量 GaN/Si Diamond/GaN/Si Exfoliated-GaN/Si GaN peak/cm–1 568.1 567.8 568.1 FWHM002/arcsec 550 654 530 μ/(cm2·V–1·s–1) 1588.8 1178.2 1583.8 Ns/(electron, 1012 cm–2) 9.208 12.92 8.803 Rs/(Ω·square–1) 391.8 370.8 418.5 -
[1] EI Fatimy A, Dyakonova N, Meziani Y, Otsuji T, Knap W, Vandenbrouk S, Madjour K, Théron D, Gaquiere C, Poisson M A, Delage S, Prystawko P, Skierbiszewski C 2010 J. Appl. Phys. 107 024504Google Scholar
[2] Marti D, Tirelli S, Alt A R, Roberts J, Bolognesi C R 2012 IEEE Electron Dev. Lett. 33 1372Google Scholar
[3] Nazari M, Hancock B L, Piner E L, Holtz M W 2015 IEEE Compd. Semicond. Integr. Circuit Symp. 62 1467Google Scholar
[4] Coe S E, Sussmann R S 2000 Diamond Relat. Mater. 9 1726Google Scholar
[5] Alomari M, Dipalo M, Rossi S, Diforte-Poisson M A, Delage S, Carlin J F, Grandjean N, Gaquiere C, Toth L, Pecz B, Kohn E 2011 Diamond Relat. Mater. 20 604Google Scholar
[6] Altman D, Tyhach M, McClymonds J, Kim S, Graham S 2014 Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) Orlando, USA, May 27–30, 2014 p1199
[7] Anderson T J, Hobart K D, Tadjer M J, Koehler A D, Imhoff E A, Hite J K, Feygelson T I, Pate B B, Eddy Jr C R, Kub F J 2017 ECS J. Solid State Sci. Technol. 6 Q3036Google Scholar
[8] Hancock B L, Nazari M, Anderson J, Piner E, Faili F, Oh S, Twitchen D, Graham S, Holtz M 2016 Appl. Phys. Lett. 108 211901Google Scholar
[9] Zhou Y, Ramaneti R, Anaya J, Korneychuk S, Derluyn J, Sun H, Pomeroy J, Verbeeck J, Haenen K, Kubal M 2017 Appl. Phys. Lett. 111 041901Google Scholar
[10] Ahmed R, Siddique A, Anderson J, Engdahl C, Holtz M, Piner E 2019 Cryst. Growth Des. 19 672Google Scholar
[11] Siddique A, Ahmed R, Anderson J, Nazari M, Yates L, Graham S, Holtz M, Piner E L 2019 ACS Appl. Electron. Mater. 1 1387Google Scholar
[12] Malakoutian M, Ren C H, Woo K, Li H, Chowdhury S 2021 Cryst. Growth Des. 21 2624Google Scholar
[13] 杨士奇, 任泽阳, 张金风, 何琦, 苏凯, 张进成, 郭怀新, 郝跃 2021 固体电子学研究与进展 41 18Google Scholar
Yang S Q, Ren Z Y, Zhang J F, He Q, Su K, Zhang J C, Guo H X, Hao Y 2021 Res. Prog. SSE 41 18Google Scholar
[14] Wang A, Tadjer M J, Anderson T J, Baranyai R, Pomer J W 2013 IEEE Trans. Electron Dev. 60 3149Google Scholar
[15] Tadjer M J, Anderson T J, Hobart K D, Mastro M A, Hite J K, Caldwell J D, Picard Y N, Kub F J, Eddy Jr C R 2010 Electron. Mater. 39 2452Google Scholar
[16] Sun H, Simon R B P, Pomeroy J W, Francis D, Faili F, Twitchen D J, Kuball M 2015 Appl. Phys. Lett. 106 111906Google Scholar
[17] Teng Y, Liu D Y, Tang K, Zhao W K, Chen Z A, Huang Y M, Duan J J, Bian Y, Ye J D, Zhu S M, Zhang R, Zheng Y D, Gu S M 2022 Chin. Phys. B 31 128106Google Scholar
[18] 李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃 2023 72 038102Google Scholar
Li J P, Ren Z Y, Zhang J F, Wang H X, Ma Y C, Fei Y F, Huang S Y, Ding S C, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 038102Google Scholar
[19] Sein H, Ahmed W, Jackson M, Ali N, Gracio J 2003 Surf. Coat. Tech. 163 196Google Scholar
[20] Xie W L, Lv X Y, Wang Q L, Li L A, Zou G T 2022 Chin. Phys. B 31 108106Google Scholar
[21] Letts E, Key D, Hashimoto T 2016 J. Cryst. Growth 456 27Google Scholar
[22] Davis R F, Gehrke T, Linthicum K J, Preble E, Rajagopal P, Ronning C, Zorman C, Mehregany M 2001 J. Cryst. Growth 231 335Google Scholar
[23] Dadgar A, Schulze F, Wienecke M, Gadanecz A, Bläsing J, Veit P, Hempel T, Diez A, Christen J, Krost A 2007 New J. Phys. 9 389Google Scholar
[24] Kumar M S, Kumar J 2003 Mater. Chem. Phys. 77 341Google Scholar
[25] Sochacki T, Bryan Z, Amilusik M, Collazo R, Lucznik B, Weyher J L, Nowak G, Sadovyi B, Kamler G, Kucharski R 2013 Appl. Phys. Express 6 075504Google Scholar
[26] Ahmed R, Siddique A, Anderson J, Gautam C, Holtz M, Piner E 2020 ACS Appl. Mater. Interfaces 12 39397Google Scholar
[27] Cuenca J A, Smith M D, Field D E, Massabuau F C-P, Mandal S, Pomeroy J, Wallis D J, Oliver R A, Thayne I, Kuball M, Williams O A 2021 Carbon 174 647Google Scholar
[28] Kisielowski C, Krüger J, Ruvimov S, Suski T, Ager J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D, Davis R F 1996 Phys. Rev. B Condens. Matter Mater. Phys. 54 17745Google Scholar
[29] Kang B S, Kim S, Kim J, Ren F, Baik K, Pearton S J, Gila B P, Abernathy C R, Pan C C, Chen G T, Chyi J I, Chandrasekaran V, Sheplak M, Nishida T, Chu S N G 2003 Appl. Phys. Lett. 83 4845Google Scholar
[30] Vanko G, Drzik M, Vallo M, Lalinsky T, Kutis V, Stancik S, Ryger I, Bencurova A 2011 Sens. Actuators A Phys. 172 1Google Scholar
[31] Liu Y, Ruden P P, Xie J, Morkoc H, Son K A 2006 Appl. Phys. Lett. 88 013505Google Scholar
[32] Azize M, Palacios T 2010 J. Appl. Phys. 108 023707Google Scholar
[33] Jeon C M, Lee J L 2005 Appl. Phys. Lett. 86 172101Google Scholar
计量
- 文章访问数: 3668
- PDF下载量: 128
- 被引次数: 0