-
采用等离子增强原子层沉积技术在低温下于单晶硅衬底上成功生长了GaN多晶薄膜,利用椭圆偏振仪、低角度掠入射X射线衍射仪、X射线光电子能谱仪对薄膜样品的生长速率、晶体结构及薄膜成分进行了表征和分析.结果表明,等离子增强原子层沉积技术生长GaN的温度窗口为210270℃,薄膜在较高生长温度下呈多晶态,在较低温度下呈非晶态;薄膜中N元素与大部分Ga元素结合成NGa键生成GaN,有少量的Ga元素以GaO键存在,多晶GaN薄膜含有少量非晶态Ga2O3.
-
关键词:
- 等离子增强原子层沉积 /
- 氮化镓 /
- 低温沉积
Metalorganic chemical vapour deposition and molecular beam epitaxy have already been demonstrated to be successful techniques for obtaining high-quality epitaxial GaN layers with low impurity concentrations and pretty good electrical properties. However, high growth temperature employed in both of these methods give rise to some intrinsic defects of the thin films, such as high background-carrier concentrations. As a low-temperature thin film deposition method, plasma-enhanced atomic layer deposition (PE-ALD) has more unique advantages compared to both methods for epitaxial growth of GaN. In this paper, the polycrystalline GaN thin films were fabricated on Si (100) substrates at 150-300℃ by PE-ALD. Trimethylgallium and N2/H2 plasma gas mixture were used as the Ga and N precursors. The growth rate of the thin films was demonstrated by the spectroscopic ellipsometer. The crystal structrue and composition of the GaN thin films were characterized by X-ray diffractometer and X-ray photoelectron spectrometer (XPS). It is showed that the growth window for PE-ALD grown GaN thin films is 210-270℃, where the growth rate remains constant at 0.70 /cycle. And it is known that it is the self-limiting nature of PE-ALD that is ascribed to the plateau of the growth rate. Films grown at relatively higher temperature are polycrystalline with a hexagonal wurtzite structure, while films grown under relatively lower temperature are amorphous. The grazing incidence X-ray diffraction (GIXRD) patterns of the polycrystalline thin films reveal three main peaks located at 2=32.4, 34.6 and 36.9, which are corresponding to the (100), (002) and (101) reflections. It is showed that the Ga, N atoms would get higher energy for more effective migration to positions with lowest energy to form ordered crystalline arrange at higher growth temperature. The XPS results show that all the N elements of the as-grown thin films are in the form of NGa bond, indicating that all the N elements are formed into GaN thin films; and there is a little amount of the Ga elements that exist in GaO bond. The fact that there is no Ga2O3-related peaks in the GIXRD pattern suggests that there is small amount of amorphous Ga2O3 dispersed in the polycrystalline GaN thin films. In the future work, reducing the concentration of the C and O impurities may be achieved by increasing the time of the reaction and plasma pules in the process formula and replacing the inductively coupled plasma with the hollow cathode plasma, respectively.[1] Vurgaftman, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[2] Strite S, Morko H 1992 J. Vac. Sci. Technol. B 10 1237
[3] Pearton S J, Zolper J C, Shul R J, Ren F 1999 J. Appl. Phys. 86 1
[4] Nakamura S 1991 Jpn. J. Appl. Phys. Part 2 30 1705
[5] Nakamura S, Senoh M, Mukai T 1993 Appl. Phys. Lett. 62 2390
[6] Calarco R, Marso M, Richter T, Aykanat A I, Meijers R, Hart A, Stoica T, Lth H 2005 Nano Lett. 5 981
[7] Kim H M, Cho Y H, Lee H, Kim S II, Ryu S R, Kim D Y, Kang T W, Chung K S 2004 Nano Lett. 4 1059
[8] Hirvikorpia T, Nissia M V, Nikkolab J, Harlina A, Karppinen M 2011 Surf. Coat. Technol. 205 5088
[9] George S M 2010 Chem. Rev. 110 111
[10] Puurunen R L 2005 J. Appl. Phys. 97 121301
[11] Kim O, Kim D, Anderson T 2009 J. Vac. Sci. Technol. A 27 923
[12] Sumakeris J, Sitar Z, Ailey K S, More K L, Davis R F 1993 Thin Solid Films 225 244
[13] Ozgit A C, Goldenberg E, Okyay A K, Biyikli N 2014 J. Mater. Chem. C 2 2123
[14] Bolat S, Ozgit A C, Tekcan B, Biyikli N, Okyay A K 2014 Appl. Phys. Lett. 104 243505
[15] Ozgit A C, Donmez I, Biyikli N 2013 ECS Trans. 58 289
[16] Goldenberg E, Ozgit A C, Biyikli N, Okyay A K 2014 J. Vac. Sci. Technol. A 32 031508
[17] Motamedi P, Cadien K 2015 RSC Adv. 5 57865
[18] Feng J H, Tang L D, Liu B W, Xia Y, Wang B 2013 Acta Phys. Sin. 62 117302 (in Chinese) [冯嘉恒, 唐利丹, 刘邦武, 夏洋, 王冰 2013 62 117302]
[19] Butcher K S A, Afifuddin, Chen P P T, Tansley T L 2001 Phys. Status Solidi C 0 156
[20] Wolter S D, Luther B P, Waltemyer D L, Onneby C, Mohney S E 1997 Appl. Phys. Lett. 70 2156
[21] Kumar P, Kumar M, Govind, Mehta B R, Shivaprasad S M 2009 Appl. Surf. Sci. 256 517
[22] Matoln V, Fabk S, Glosk J, Bideux L, Ould M Y, Gruzza B 2004 Vacuum 76 471
[23] Lambrecht W R L, Segall B, Strite S, Martin G, Agarwal A, Morko H, Rockett A 1994 Phys. Rev. B 50 14155
[24] Majlinger Z, Bozanic A, Petravic M, Kim K J, Kim B, Yang Y W 2009 Vacuum 84 41
[25] Moldovan G, Harrison I, Roe M, Brown P D 2004 Inst. Phys. Conf. Ser. 179 115
-
[1] Vurgaftman, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[2] Strite S, Morko H 1992 J. Vac. Sci. Technol. B 10 1237
[3] Pearton S J, Zolper J C, Shul R J, Ren F 1999 J. Appl. Phys. 86 1
[4] Nakamura S 1991 Jpn. J. Appl. Phys. Part 2 30 1705
[5] Nakamura S, Senoh M, Mukai T 1993 Appl. Phys. Lett. 62 2390
[6] Calarco R, Marso M, Richter T, Aykanat A I, Meijers R, Hart A, Stoica T, Lth H 2005 Nano Lett. 5 981
[7] Kim H M, Cho Y H, Lee H, Kim S II, Ryu S R, Kim D Y, Kang T W, Chung K S 2004 Nano Lett. 4 1059
[8] Hirvikorpia T, Nissia M V, Nikkolab J, Harlina A, Karppinen M 2011 Surf. Coat. Technol. 205 5088
[9] George S M 2010 Chem. Rev. 110 111
[10] Puurunen R L 2005 J. Appl. Phys. 97 121301
[11] Kim O, Kim D, Anderson T 2009 J. Vac. Sci. Technol. A 27 923
[12] Sumakeris J, Sitar Z, Ailey K S, More K L, Davis R F 1993 Thin Solid Films 225 244
[13] Ozgit A C, Goldenberg E, Okyay A K, Biyikli N 2014 J. Mater. Chem. C 2 2123
[14] Bolat S, Ozgit A C, Tekcan B, Biyikli N, Okyay A K 2014 Appl. Phys. Lett. 104 243505
[15] Ozgit A C, Donmez I, Biyikli N 2013 ECS Trans. 58 289
[16] Goldenberg E, Ozgit A C, Biyikli N, Okyay A K 2014 J. Vac. Sci. Technol. A 32 031508
[17] Motamedi P, Cadien K 2015 RSC Adv. 5 57865
[18] Feng J H, Tang L D, Liu B W, Xia Y, Wang B 2013 Acta Phys. Sin. 62 117302 (in Chinese) [冯嘉恒, 唐利丹, 刘邦武, 夏洋, 王冰 2013 62 117302]
[19] Butcher K S A, Afifuddin, Chen P P T, Tansley T L 2001 Phys. Status Solidi C 0 156
[20] Wolter S D, Luther B P, Waltemyer D L, Onneby C, Mohney S E 1997 Appl. Phys. Lett. 70 2156
[21] Kumar P, Kumar M, Govind, Mehta B R, Shivaprasad S M 2009 Appl. Surf. Sci. 256 517
[22] Matoln V, Fabk S, Glosk J, Bideux L, Ould M Y, Gruzza B 2004 Vacuum 76 471
[23] Lambrecht W R L, Segall B, Strite S, Martin G, Agarwal A, Morko H, Rockett A 1994 Phys. Rev. B 50 14155
[24] Majlinger Z, Bozanic A, Petravic M, Kim K J, Kim B, Yang Y W 2009 Vacuum 84 41
[25] Moldovan G, Harrison I, Roe M, Brown P D 2004 Inst. Phys. Conf. Ser. 179 115
计量
- 文章访问数: 6220
- PDF下载量: 315
- 被引次数: 0