搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子增强原子层沉积低温生长GaN薄膜

汤文辉 刘邦武 张柏诚 李敏 夏洋

引用本文:
Citation:

等离子增强原子层沉积低温生长GaN薄膜

汤文辉, 刘邦武, 张柏诚, 李敏, 夏洋

Low temperature depositions of GaN thin films by plasma-enhanced atomic layer deposition

Tang Wen-Hui, Liu Bang-Wu, Zhang Bo-Cheng, Li Min, Xia Yang
PDF
导出引用
  • 采用等离子增强原子层沉积技术在低温下于单晶硅衬底上成功生长了GaN多晶薄膜,利用椭圆偏振仪、低角度掠入射X射线衍射仪、X射线光电子能谱仪对薄膜样品的生长速率、晶体结构及薄膜成分进行了表征和分析.结果表明,等离子增强原子层沉积技术生长GaN的温度窗口为210270℃,薄膜在较高生长温度下呈多晶态,在较低温度下呈非晶态;薄膜中N元素与大部分Ga元素结合成NGa键生成GaN,有少量的Ga元素以GaO键存在,多晶GaN薄膜含有少量非晶态Ga2O3.
    Metalorganic chemical vapour deposition and molecular beam epitaxy have already been demonstrated to be successful techniques for obtaining high-quality epitaxial GaN layers with low impurity concentrations and pretty good electrical properties. However, high growth temperature employed in both of these methods give rise to some intrinsic defects of the thin films, such as high background-carrier concentrations. As a low-temperature thin film deposition method, plasma-enhanced atomic layer deposition (PE-ALD) has more unique advantages compared to both methods for epitaxial growth of GaN. In this paper, the polycrystalline GaN thin films were fabricated on Si (100) substrates at 150-300℃ by PE-ALD. Trimethylgallium and N2/H2 plasma gas mixture were used as the Ga and N precursors. The growth rate of the thin films was demonstrated by the spectroscopic ellipsometer. The crystal structrue and composition of the GaN thin films were characterized by X-ray diffractometer and X-ray photoelectron spectrometer (XPS). It is showed that the growth window for PE-ALD grown GaN thin films is 210-270℃, where the growth rate remains constant at 0.70 /cycle. And it is known that it is the self-limiting nature of PE-ALD that is ascribed to the plateau of the growth rate. Films grown at relatively higher temperature are polycrystalline with a hexagonal wurtzite structure, while films grown under relatively lower temperature are amorphous. The grazing incidence X-ray diffraction (GIXRD) patterns of the polycrystalline thin films reveal three main peaks located at 2=32.4, 34.6 and 36.9, which are corresponding to the (100), (002) and (101) reflections. It is showed that the Ga, N atoms would get higher energy for more effective migration to positions with lowest energy to form ordered crystalline arrange at higher growth temperature. The XPS results show that all the N elements of the as-grown thin films are in the form of NGa bond, indicating that all the N elements are formed into GaN thin films; and there is a little amount of the Ga elements that exist in GaO bond. The fact that there is no Ga2O3-related peaks in the GIXRD pattern suggests that there is small amount of amorphous Ga2O3 dispersed in the polycrystalline GaN thin films. In the future work, reducing the concentration of the C and O impurities may be achieved by increasing the time of the reaction and plasma pules in the process formula and replacing the inductively coupled plasma with the hollow cathode plasma, respectively.
      通信作者: 李敏, kd_limin@126.com;xiayang@ime.ac.cn ; 夏洋, kd_limin@126.com;xiayang@ime.ac.cn
    • 基金项目: 浙江省科研院所扶持专项(批准号:2016F50009)资助的课题.
      Corresponding author: Li Min, kd_limin@126.com;xiayang@ime.ac.cn ; Xia Yang, kd_limin@126.com;xiayang@ime.ac.cn
    • Funds: Project supported by the Support Special Project Foundation for Scientific Research Institutes of Zhejiang Province, China (Grant No. 2016F50009).
    [1]

    Vurgaftman, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815

    [2]

    Strite S, Morko H 1992 J. Vac. Sci. Technol. B 10 1237

    [3]

    Pearton S J, Zolper J C, Shul R J, Ren F 1999 J. Appl. Phys. 86 1

    [4]

    Nakamura S 1991 Jpn. J. Appl. Phys. Part 2 30 1705

    [5]

    Nakamura S, Senoh M, Mukai T 1993 Appl. Phys. Lett. 62 2390

    [6]

    Calarco R, Marso M, Richter T, Aykanat A I, Meijers R, Hart A, Stoica T, Lth H 2005 Nano Lett. 5 981

    [7]

    Kim H M, Cho Y H, Lee H, Kim S II, Ryu S R, Kim D Y, Kang T W, Chung K S 2004 Nano Lett. 4 1059

    [8]

    Hirvikorpia T, Nissia M V, Nikkolab J, Harlina A, Karppinen M 2011 Surf. Coat. Technol. 205 5088

    [9]

    George S M 2010 Chem. Rev. 110 111

    [10]

    Puurunen R L 2005 J. Appl. Phys. 97 121301

    [11]

    Kim O, Kim D, Anderson T 2009 J. Vac. Sci. Technol. A 27 923

    [12]

    Sumakeris J, Sitar Z, Ailey K S, More K L, Davis R F 1993 Thin Solid Films 225 244

    [13]

    Ozgit A C, Goldenberg E, Okyay A K, Biyikli N 2014 J. Mater. Chem. C 2 2123

    [14]

    Bolat S, Ozgit A C, Tekcan B, Biyikli N, Okyay A K 2014 Appl. Phys. Lett. 104 243505

    [15]

    Ozgit A C, Donmez I, Biyikli N 2013 ECS Trans. 58 289

    [16]

    Goldenberg E, Ozgit A C, Biyikli N, Okyay A K 2014 J. Vac. Sci. Technol. A 32 031508

    [17]

    Motamedi P, Cadien K 2015 RSC Adv. 5 57865

    [18]

    Feng J H, Tang L D, Liu B W, Xia Y, Wang B 2013 Acta Phys. Sin. 62 117302 (in Chinese) [冯嘉恒, 唐利丹, 刘邦武, 夏洋, 王冰 2013 62 117302]

    [19]

    Butcher K S A, Afifuddin, Chen P P T, Tansley T L 2001 Phys. Status Solidi C 0 156

    [20]

    Wolter S D, Luther B P, Waltemyer D L, Onneby C, Mohney S E 1997 Appl. Phys. Lett. 70 2156

    [21]

    Kumar P, Kumar M, Govind, Mehta B R, Shivaprasad S M 2009 Appl. Surf. Sci. 256 517

    [22]

    Matoln V, Fabk S, Glosk J, Bideux L, Ould M Y, Gruzza B 2004 Vacuum 76 471

    [23]

    Lambrecht W R L, Segall B, Strite S, Martin G, Agarwal A, Morko H, Rockett A 1994 Phys. Rev. B 50 14155

    [24]

    Majlinger Z, Bozanic A, Petravic M, Kim K J, Kim B, Yang Y W 2009 Vacuum 84 41

    [25]

    Moldovan G, Harrison I, Roe M, Brown P D 2004 Inst. Phys. Conf. Ser. 179 115

  • [1]

    Vurgaftman, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815

    [2]

    Strite S, Morko H 1992 J. Vac. Sci. Technol. B 10 1237

    [3]

    Pearton S J, Zolper J C, Shul R J, Ren F 1999 J. Appl. Phys. 86 1

    [4]

    Nakamura S 1991 Jpn. J. Appl. Phys. Part 2 30 1705

    [5]

    Nakamura S, Senoh M, Mukai T 1993 Appl. Phys. Lett. 62 2390

    [6]

    Calarco R, Marso M, Richter T, Aykanat A I, Meijers R, Hart A, Stoica T, Lth H 2005 Nano Lett. 5 981

    [7]

    Kim H M, Cho Y H, Lee H, Kim S II, Ryu S R, Kim D Y, Kang T W, Chung K S 2004 Nano Lett. 4 1059

    [8]

    Hirvikorpia T, Nissia M V, Nikkolab J, Harlina A, Karppinen M 2011 Surf. Coat. Technol. 205 5088

    [9]

    George S M 2010 Chem. Rev. 110 111

    [10]

    Puurunen R L 2005 J. Appl. Phys. 97 121301

    [11]

    Kim O, Kim D, Anderson T 2009 J. Vac. Sci. Technol. A 27 923

    [12]

    Sumakeris J, Sitar Z, Ailey K S, More K L, Davis R F 1993 Thin Solid Films 225 244

    [13]

    Ozgit A C, Goldenberg E, Okyay A K, Biyikli N 2014 J. Mater. Chem. C 2 2123

    [14]

    Bolat S, Ozgit A C, Tekcan B, Biyikli N, Okyay A K 2014 Appl. Phys. Lett. 104 243505

    [15]

    Ozgit A C, Donmez I, Biyikli N 2013 ECS Trans. 58 289

    [16]

    Goldenberg E, Ozgit A C, Biyikli N, Okyay A K 2014 J. Vac. Sci. Technol. A 32 031508

    [17]

    Motamedi P, Cadien K 2015 RSC Adv. 5 57865

    [18]

    Feng J H, Tang L D, Liu B W, Xia Y, Wang B 2013 Acta Phys. Sin. 62 117302 (in Chinese) [冯嘉恒, 唐利丹, 刘邦武, 夏洋, 王冰 2013 62 117302]

    [19]

    Butcher K S A, Afifuddin, Chen P P T, Tansley T L 2001 Phys. Status Solidi C 0 156

    [20]

    Wolter S D, Luther B P, Waltemyer D L, Onneby C, Mohney S E 1997 Appl. Phys. Lett. 70 2156

    [21]

    Kumar P, Kumar M, Govind, Mehta B R, Shivaprasad S M 2009 Appl. Surf. Sci. 256 517

    [22]

    Matoln V, Fabk S, Glosk J, Bideux L, Ould M Y, Gruzza B 2004 Vacuum 76 471

    [23]

    Lambrecht W R L, Segall B, Strite S, Martin G, Agarwal A, Morko H, Rockett A 1994 Phys. Rev. B 50 14155

    [24]

    Majlinger Z, Bozanic A, Petravic M, Kim K J, Kim B, Yang Y W 2009 Vacuum 84 41

    [25]

    Moldovan G, Harrison I, Roe M, Brown P D 2004 Inst. Phys. Conf. Ser. 179 115

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响.  , 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响.  , 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [3] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究.  , 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [4] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用.  , 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [5] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究.  , 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [6] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响.  , 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [7] 王光绪, 陈鹏, 刘军林, 吴小明, 莫春兰, 全知觉, 江风益. 刻蚀AlN缓冲层对硅衬底N极性n-GaN表面粗化的影响.  , 2016, 65(8): 088501. doi: 10.7498/aps.65.088501
    [8] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究.  , 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [9] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响.  , 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [10] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究.  , 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [11] 冯嘉恒, 唐立丹, 刘邦武, 夏洋, 王冰. 等离子增强原子层沉积低温生长AlN薄膜.  , 2013, 62(11): 117302. doi: 10.7498/aps.62.117302
    [12] 何静婧, 刘玮, 李志国, 李博研, 韩安军, 李光旻, 张超, 张毅, 孙云. 低温生长Cu(InGa)Se2薄膜吸收层的掺钠工艺研究.  , 2012, 61(19): 198801. doi: 10.7498/aps.61.198801
    [13] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法.  , 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [14] 毛清华, 江风益, 程海英, 郑畅达. p-AlGaN电子阻挡层Al组分对Si衬底绿光LED性能影响的研究.  , 2010, 59(11): 8078-8082. doi: 10.7498/aps.59.8078
    [15] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性.  , 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [16] 李 彤, 王怀兵, 刘建平, 牛南辉, 张念国, 邢艳辉, 韩 军, 刘 莹, 高 国, 沈光地. Delta掺杂制备p-GaN薄膜及其电性能研究.  , 2007, 56(2): 1036-1040. doi: 10.7498/aps.56.1036
    [17] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究.  , 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [18] 张小东, 林德旭, 李公平, 尤 伟, 张利民, 张 宇, 刘正民. 离子注入n型GaN光致发光谱中宽黄光发射带研究.  , 2006, 55(10): 5487-5493. doi: 10.7498/aps.55.5487
    [19] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究.  , 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] 李拥华, 徐彭寿, 潘海滨, 徐法强, 谢长坤. GaN(1010)表面结构的第一性原理计算.  , 2005, 54(1): 317-322. doi: 10.7498/aps.54.317
计量
  • 文章访问数:  6220
  • PDF下载量:  315
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-29
  • 修回日期:  2017-02-06
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map