搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维层状材料的神经形态器件研究进展

李策 杨栋梁 孙林锋

引用本文:
Citation:

基于二维层状材料的神经形态器件研究进展

李策, 杨栋梁, 孙林锋

Research progress of neuromorphic devices based on two-dimensional layered materials

Li Ce, Yang Dong-Liang, Sun Lin-Feng
PDF
HTML
导出引用
  • 近年来, 人工智能的发展对计算和存储的需求不断提升. 但是, 摩尔定律的放缓以及传统冯·诺依曼架构中计算与存储单元的分离, 导致了大量数据在搬运过程中功耗增加和时间延迟, 致使集成电路以及芯片设计面临越来越多的挑战. 这迫切需要开发新型计算范式来应对这种挑战. 而基于存算一体架构的神经形态器件, 可利用欧姆定律和基尔霍夫定律实现原位计算, 从而有望克服传统冯·诺依曼架构瓶颈. 通过调节具有“记忆”功能的忆阻器阻值, 实现类似生物大脑的人工神经网络, 并对复杂网络信号进行处理, 例如图像识别、模式分类和决策执行等. 二维材料由于其层状超薄特性和新奇的物理效应, 为进一步缩小器件尺寸并实现感存算一体提供了方案. 本文综述了基于二维材料的神经形态器件中的物理效应和忆阻特性, 并详细阐述了神经形态器件对LIF (leaky integrate and fire)模型、Hodgkin-Huxley模型等神经元模型以及长期可塑性、短期可塑性、放电时间依赖可塑性和尖峰频率依赖可塑性的模拟. 在此基础上, 进一步介绍了基于二维材料的神经形态器件在视觉、听觉以及触觉等领域的探索性应用. 最后本文总结了当前研究领域面临的问题以及对未来应用前景的展望.
    In recent years, the development of artificial intelligence has increased the demand for computing and storage. However, the slowing down of Moore’s law and the separation between computing and storage units in traditional von Neumann architectures result in the increase of power consumption and time delays in the transport of abundant data, raising more and more challenges for integrated circuit and chip design. It is urgent for us to develop new computing paradigms to meet this challenge. The neuromorphic devices based on the in-memory computing architecture can overcome the traditional von Neumann architecture by Ohm’s law and Kirchhoff’s current law. By adjusting the resistance value of the memristor, the artificial neural network which can mimic the biological brain will be realized, and complex signal processing such as image recognition, pattern classification and decision determining can be carried out. In order to further reduce the size of device and realize the integration of sensing, memory and computing, two-dimensional materials can provide a potential solution due to their ultrathin thickness and rich physical effects. In this paper, we review the physical effects and memristive properties of neuromorphic devices based on two-dimensional materials, and describe the synaptic plasticity of neuromorphic devices based on leaky integrate and fire model and Hodgkin-Huxley model in detail, including long-term synaptic plasticity, short-term synaptic plasticity, spiking-time-dependent plasticity and spiking-rate-dependent plasticity. Moreover, the potential applications of two-dimensional materials based neuromorphic devices in the fields of vision, audition and tactile are introduced. Finally, we summarize the current issues on two-dimensional materials based neuromorphic computing and give the prospects for their future applications.
      通信作者: 杨栋梁, yangdl@bit.edu.cn ; 孙林锋, sunlinfeng@bit.edu.cn
    • 基金项目: 北京市自然科学基金重点研究专题项目(批准号: Z210006)和国家自然科学基金青年科学基金(批准号: 12104051)资助的课题.
      Corresponding author: Yang Dong-Liang, yangdl@bit.edu.cn ; Sun Lin-Feng, sunlinfeng@bit.edu.cn
    • Funds: Project Supported by the Key Research Program of Beijing Natural Science Foundation, China (Grant No. Z210006) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12104051).
    [1]

    Liu C, Chen H, Wang S, Liu Q, Jiang Y G, Zhang D W, Liu M, Zhou P 2020 Nat. Nanotechnol. 15 545Google Scholar

    [2]

    Horowitz M 2014 IEEE Int. Solid-State Circuits Conf. Digest Tech. Papers (ISSCC) San Francisco, USA, February 9–13, 2014 p10

    [3]

    Gibney E 2017 Nat. News 541 142Google Scholar

    [4]

    Fukuda S 2020 World 2.0: From Working for Others to Working for Yourself (Berlin: Springer) p34

    [5]

    Zhang E, Wang W, Zhang C, Jin Y, Zhu G, Sun Q, Zhang D W, Zhou P, Xiu F 2015 ACS Nano 9 612Google Scholar

    [6]

    Zhou G D, Wang Z R, Sun B, Zhou F C, Sun L F, Zhao H B, Hu X F, Peng X Y, Yan J, Wang H M, Wang W H, Li J, Yan B T, Kuang D L, Wang Y C, Wang L D, Duan S K 2022 Adv. Electron. Mater. 8 2101127Google Scholar

    [7]

    Li H, Wang S, Zhang X, Wang W, Yang R, Sun Z, Feng W, Lin P, Wang Z, Sun L 2021 Adv. Intell. Syst. 3 2100017Google Scholar

    [8]

    Sun L, Yu H, Wang D, Jiang J, Kim D, Kim H, Zheng S, Zhao M, Ge Q, Yang H 2018 2D Mater. 6 015029Google Scholar

    [9]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [10]

    邵楠, 张盛兵, 邵舒渊 2019 68 198502Google Scholar

    Shao N, Zhang S B, Shao S Y 2019 Acta Phys. Sin. 68 198502Google Scholar

    [11]

    Wang Z R, Rao M Y, Han J W, Zhang J M, Lin P, Li Y N, Li C, Song W H, Asapu S, Midya R, Jiang H, Yoon J H, Upadhyay N K, Qiu Q R, Williams R S, Xia Q F, Yang J J 2018 Nat. Commun. 9 3208Google Scholar

    [12]

    Chua L 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [13]

    Yang D, Yang H, Guo X, Zhang H, Jiao C, Xiao W, Guo P, Wang Q, He D 2020 Adv. Funct. Mater. 30 2004514Google Scholar

    [14]

    Yang H, Wang Z, Guo X, Su H, Sun K, Yang D, Xiao W, Wang Q, He D 2020 ACS Appl. Mater. Interfaces 12 34370Google Scholar

    [15]

    Guo X, Wang Q, Lü X, Yang H, Sun K, Yang D, Zhang H, Hasegawa T, He D 2020 Nanoscale 12 4320Google Scholar

    [16]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [17]

    刘益春, 林亚, 王中强, 徐海阳 2019 68 168504Google Scholar

    Liu Y C, Lin Y, Wang Z Q, Xu H Y 2019 Acta Phys. Sin. 68 168504Google Scholar

    [18]

    Zhou Y, Li Y, Xu L, Zhong S, Sun H, Miao X 2015 Appl. Phys. Lett. 106 233502Google Scholar

    [19]

    Li C, Hu M, Li Y, Jiang H, Ge N, Montgomery E, Zhang J, Song W, Dávila N, Graves C E 2018 Nat. Electron. 1 52Google Scholar

    [20]

    Abuelma’atti M T, Khalifa Z J 2015 AEU-Int. J. Electron. C. 69 771Google Scholar

    [21]

    Wang Z, Wang L, Nagai M, Xie L, Yi M, Huang W 2017 Adv. Electron. Mater. 3 1600510Google Scholar

    [22]

    余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 67 157302Google Scholar

    Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar

    [23]

    Chang T, Jo S H, Lu W 2011 ACS Nano 5 7669Google Scholar

    [24]

    Xing Z W, Wu N J, Ignatiev A 2007 Appl. Phys. Lett. 91 052106Google Scholar

    [25]

    Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C, Zhu X J 2012 Adv. Funct. Mater. 22 2759Google Scholar

    [26]

    Sun L, Zhang Y S, Hwang G, Jiang J, Kim D, Eshete Y A, Zhao R, Yang H 2018 Nano Lett. 18 3229Google Scholar

    [27]

    Al-Saleh M H, Al-Anid H K, Husain Y A, El-Ghanem H M, Jawad S A 2013 J. Phys. D:Appl. Phys. 46 385305Google Scholar

    [28]

    Terabe K, Hasegawa T, Nakayama T, Aono M 2005 Nature 433 47Google Scholar

    [29]

    Hasegawa T, Terabe K, Tsuruoka T, Aono M 2012 Adv. Mater. 24 252Google Scholar

    [30]

    Pan C, Wang C Y, Liang S J, Wang Y, Cao T, Wang P, Wang C, Wang S, Cheng B, Gao A 2020 Nat. Electron. 3 383Google Scholar

    [31]

    Wang S, Pan X, Lyu L, Wang C Y, Wang P, Pan C, Yang Y, Wang C, Shi J, Cheng B 2022 ACS Nano 16 4528Google Scholar

    [32]

    Sun L, Yan J, Zhan D, Liu L, Hu H, Li H, Tay B K, Kuo J L, Huang C C, Hewak D W 2013 Phys. Rev. Lett. 111 126801Google Scholar

    [33]

    Lee C H, Lee G H, Van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F 2014 Nat. Nanotechnol. 9 676Google Scholar

    [34]

    Lin Z, Liu Y, Halim U, Ding M, Liu Y, Wang Y, Jia C, Chen P, Duan X, Wang C 2018 Nature 562 254Google Scholar

    [35]

    Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696Google Scholar

    [36]

    Chen S, Mahmoodi M R, Shi Y, Mahata C, Yuan B, Liang X, Wen C, Hui F, Akinwande D, Strukov D B 2020 Nat. Electron. 3 638Google Scholar

    [37]

    Wang M, Wang C Y, Wu C, Li Q, Pan C, Wang C, Liang S J, Miao F 2019 Adv. Electron. Mater. 5 1800853Google Scholar

    [38]

    Chen H, Xue X, Liu C, Fang J, Wang Z, Wang J, Zhang D W, Hu W, Zhou P 2021 Nat. Electron. 4 399Google Scholar

    [39]

    Fu X, Zhang L, Cho H D, Kang T W, Fu D, Lee D, Lee S W, Li L, Qi T, Chan A S 2019 Small 15 1903809Google Scholar

    [40]

    Zhu X, Li D, Liang X, Lu W D 2019 Nat. Mater. 18 141Google Scholar

    [41]

    Zhang F, Zhang H, Krylyuk S, Milligan C A, Zhu Y, Zemlyanov D Y, Bendersky L A, Burton B P, Davydov A V, Appenzeller J 2019 Nat. Mater. 18 55Google Scholar

    [42]

    Kwon K C, Zhang Y, Wang L, Yu W, Wang X, Park I H, Choi H S, Ma T, Zhu Z, Tian B 2020 ACS Nano 14 7628Google Scholar

    [43]

    Wang L, Wang X, Zhang Y, Li R, Ma T, Leng K, Chen Z, Abdelwahab I, Loh K P 2020 Adv. Funct. Mater. 30 2004609Google Scholar

    [44]

    Wang H, Lu W, Hou S, Yu B, Zhou Z, Xue Y, Guo R, Wang S, Zeng K, Yan X 2020 Nanoscale 12 21913Google Scholar

    [45]

    Jang B C, Kim S, Yang S Y, Park J, Cha J H, Oh J, Choi J, Im S G, Dravid V P, Choi S Y 2019 Nano Lett. 19 839Google Scholar

    [46]

    Xu R, Jang H, Lee M H, Amanov D, Cho Y, Kim H, Park S, Shin H J, Ham D 2019 Nano Lett. 19 2411Google Scholar

    [47]

    Yan X, Qin C, Lu C, Zhao J, Zhao R, Ren D, Zhou Z, Wang H, Wang J, Zhang L 2019 ACS Appl. Mater. Interfaces 11 48029Google Scholar

    [48]

    Wu X, Ge R, Chen P A, Chou H, Zhang Z, Zhang Y, Banerjee S, Chiang M H, Lee J C, Akinwande D 2019 Adv. Mater. 31 1806790Google Scholar

    [49]

    Yan X, Zhao Q, Chen A P, Zhao J, Zhou Z, Wang J, Wang H, Zhang L, Li X, Xiao Z 2019 Small 15 1901423Google Scholar

    [50]

    Liu L, Li Y, Huang X, Chen J, Yang Z, Xue K H, Xu M, Chen H, Zhou P, Miao X 2021 Adv. Sci. 8 2005038Google Scholar

    [51]

    Vu Q A, Shin Y S, Kim Y R, Nguyen V L, Kang W T, Kim H, Luong D H, Lee I M, Lee K, Ko D S, Heo J, Park S, Lee Y H, Yu W J 2016 Nat. Commun. 7 12725Google Scholar

    [52]

    Liu C, Yan X, Song X, Ding S, Zhang D W, Zhou P 2018 Nat. Nanotechnol. 13 404Google Scholar

    [53]

    Xiang D, Liu T, Zhang X, Zhou P, Chen W 2021 Nano Lett. 21 3557Google Scholar

    [54]

    Jin T, Zheng Y, Gao J, Wang Y, Li E, Chen H, Pan X, Lin M, Chen W 2021 ACS Appl. Mater. Interfaces 13 10639Google Scholar

    [55]

    He C, Tang J, Shang D S, Tang J, Xi Y, Wang S, Li N, Zhang Q, Lu J K, Wei Z 2020 ACS Appl. Mater. Interfaces 12 11945Google Scholar

    [56]

    Wang S, Chen C, Yu Z, He Y, Chen X, Wan Q, Shi Y, Zhang D W, Zhou H, Wang X 2019 Adv. Mater. 31 1806227Google Scholar

    [57]

    Tran M D, Kim H, Kim J S, Doan M H, Chau T K, Vu Q A, Kim J H, Lee Y H 2019 Adv. Mater. 31 1807075Google Scholar

    [58]

    Qin S, Wang F, Liu Y, Wan Q, Wang X, Xu Y, Shi Y, Wang X, Zhang R 2017 2 D Mater. 4 035022Google Scholar

    [59]

    Ma Y, Liu B, Zhang A, Chen L, Fathi M, Shen C, Abbas A N, Ge M, Mecklenburg M, Zhou C 2015 ACS Nano 9 7383Google Scholar

    [60]

    Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K 2015 Science 349 625Google Scholar

    [61]

    Lin Y C, Dumcenco D O, Huang Y S, Suenaga K 2014 Nat. Nanotechnol. 9 391Google Scholar

    [62]

    Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M 2014 Nat. Mater. 13 1128Google Scholar

    [63]

    Loke D, Lee T, Wang W, Shi L, Zhao R, Yeo Y, Chong T, Elliott S 2012 Science 336 1566Google Scholar

    [64]

    Jeon H, Kim S G, Park J, Kim S H, Park E, Kim J, Yu H Y 2020 Small 16 2004371Google Scholar

    [65]

    Wang Z, Liu X, Zhou X, Yuan Y, Zhou K, Zhang D, Luo H, Sun J 2022 Adv. Mater. 34 2200032Google Scholar

    [66]

    Yan M, Zhu Q, Wang S, Ren Y, Feng G, Liu L, Peng H, He Y, Wang J, Zhou P 2021 Adv. Electron. Mater. 7 2001276Google Scholar

    [67]

    Luo Q, Cheng Y, Yang J G, Cao R R, Ma H L, Yang Y, Huang R, Wei W, Zheng Y H, Gong T C, Yu J, Xu X X, Yuan P, Li X Y, Tai L, Yu H R, Shang D S, Liu Q, Yu B, Ren Q W 2020 Nat. Commun. 11 1391Google Scholar

    [68]

    Oh S, Hwang H, Yoo I K 2019 APL Mater. 7 091109Google Scholar

    [69]

    Upadhyay N K, Jiang H, Wang Z R, Asapu S, Xia Q F, Joshua Yang J J 2019 Adv. Mater. Technol. 4 1800589Google Scholar

    [70]

    Kim M K, Lee J S 2019 Nano Lett. 19 2044Google Scholar

    [71]

    Oh S, Kim T, Kwak M, Song J, Woo J, Jeon S, Yoo I K, Hwang H 2017 IEEE Electron Device Lett. 38 732Google Scholar

    [72]

    Luo Z D, Zhang S, Liu Y, Zhang D, Gan X, Seidel J, Liu Y, Han G, Alexe M, Hao Y 2022 ACS Nano 16 3362Google Scholar

    [73]

    Long S B, Perniola L, Cagli C, Buckley J, Lian X J, Miranda E, Pan F, Liu M, Suñé J 2013 Sci. Rep. 3 2929Google Scholar

    [74]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732Google Scholar

    [75]

    Sharath S U, Vogel S, Molina-Luna L, Hildebrandt E, Wenger C, Kurian J, Duerrschnabel M, Niermann T, Niu G, Calka P 2017 Adv. Funct. Mater. 27 1700432Google Scholar

    [76]

    Jeong D S, Kim K M, Kim S, Choi B J, Hwang C S 2016 Adv. Electron. Mater. 2 1600090Google Scholar

    [77]

    Sun L, Hwang G, Choi W, Han G, Zhang Y, Jiang J, Zheng S, Watanabe K, Taniguchi T, Zhao M 2020 Nano Energy 69 104472Google Scholar

    [78]

    Guo J, Wang L, Liu Y, Zhao Z, Zhu E, Lin Z, Wang P, Jia C, Yang S, Lee S J 2020 Matter 2 965Google Scholar

    [79]

    Wang L, Wang Z, Zhao W, Hu B, Xie L, Yi M, Ling H, Zhang C, Chen Y, Lin J 2017 Adv. Electron. Mater. 3 1600244Google Scholar

    [80]

    Li Q, Tao Q, Chen Y, Kong L, Shu Z, Duan H, Liao L, Liu Y 2021 Int. J. Extreme Manuf. 3 045103Google Scholar

    [81]

    Liu Y, Huang Y, Duan X 2019 Nature 567 323Google Scholar

    [82]

    Jariwala D, Marks T J, Hersam M C 2017 Nat. Mater. 16 170Google Scholar

    [83]

    Zhao X, Ma J, Xiao X, Liu Q, Shao L, Chen D, Liu S, Niu J, Zhang X, Wang Y 2018 Adv. Mater. 30 1705193Google Scholar

    [84]

    Yoon J H, Zhang J, Ren X, Wang Z, Wu H, Li Z, Barnell M, Wu Q, Lauhon L J, Xia Q 2017 Adv. Funct. Mater. 27 1702010Google Scholar

    [85]

    Lenser C, Kuzmin A, Purans J, Kalinko A, Waser R, Dittmann R 2012 Appl. Phys. Lett. 111 076101Google Scholar

    [86]

    Li Z, Tian B, Xue K H, Wang B, Xu M, Lu H, Sun H, Miao X 2019 IEEE Electron Device Lett. 40 1068Google Scholar

    [87]

    Zhang W, Huang Z, Zhang W, Li Y 2014 Nano Res. 7 1731Google Scholar

    [88]

    Chen J, Guo R, Wang X, Zhu C, Cao G, You L, Duan R, Zhu C, Hadke S S, Cao X 2022 ACS Nano 16 221Google Scholar

    [89]

    Lee G H, Yu Y J, Lee C, Dean C, Shepard K L, Kim P, Hone J 2011 Appl. Phys. Lett. 99 243114Google Scholar

    [90]

    Cumings J, Zettl A 2004 Solid State Commun. 129 661Google Scholar

    [91]

    Wang S, He C, Tang J, Lu X, Shen C, Yu H, Du L, Li J, Yang R, Shi D 2019 Adv. Electron. Mater. 5 1800726Google Scholar

    [92]

    Bertolazzi S, Krasnozhon D, Kis A 2013 ACS Nano 7 3246Google Scholar

    [93]

    Choi M S, Lee G H, Yu Y J, Lee D Y, Lee S H, Kim P, Hone J, Yoo W J 2013 Nat. Commun. 4 1624Google Scholar

    [94]

    Li D, Wang X, Zhang Q, Zou L, Xu X, Zhang Z 2015 Adv. Funct. Mater. 25 7360Google Scholar

    [95]

    Wu L, Wang A, Shi J, Yan J, Zhou Z, Bian C, Ma J, Ma R, Liu H, Chen J 2021 Nat. Nanotechnol. 16 882Google Scholar

    [96]

    Lai H J, Zhou Y, Zhou H B, Zhang N, Ding X D, Liu P Y, Wang X M, Xie W G 2022 Adv. Mater. 34 2110278Google Scholar

    [97]

    Yoon J H, Kim K M, Song S J, Seok J Y, Yoon K J, Kwon D E, Park T H, Kwon Y J, Shao X, Hwang C S 2015 Adv. Mater. 27 3811Google Scholar

    [98]

    Yao Y, Li C, Huo Z L, Liu M, Zhu C X, Gu C Z, Duan X F, Wang Y G, Gu L, Yu R C 2013 Nat. Commun. 4 2764Google Scholar

    [99]

    Michalas L, Stathopoulos S, Khiat A, Prodromakis T 2018 Appl. Phys. Lett. 113 143503Google Scholar

    [100]

    Li Y, Zhong Y P, Xu L, Zhang J J, Xu X H, Sun H J, Miao X S 2013 Sci. Rep. 3 1619Google Scholar

    [101]

    Maehne H, Wylezich H, Hanzig F, Slesazeck S, Rafaja D, Mikolajick T 2014 Semicond. Sci. Technol. 29 104002Google Scholar

    [102]

    Kim H J, Zheng H, Park J S, Kim D H, Kang C J, Jang J T, Kim D H, Yoon T S 2017 Nanotechnology 28 285203Google Scholar

    [103]

    Seo S, Jo S H, Kim S, Shim J, Oh S, Kim J H, Heo K, Choi J W, Choi C, Oh S 2018 Nat. Commun. 9 1Google Scholar

    [104]

    Arnold A J, Razavieh A, Nasr J R, Schulman D S, Eichfeld C M, Das S 2017 ACS Nano 11 3110Google Scholar

    [105]

    He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y, Guo X 2018 Small 14 1800079Google Scholar

    [106]

    Pei Z, Chung A, Hwang H 2007 Appl. Phys. Lett. 90 223513Google Scholar

    [107]

    Kim E, Yim T, An S, Cho W J, Park K 2010 Appl. Phys. Lett. 97 222107Google Scholar

    [108]

    Lee J, Pak S, Lee Y W, Cho Y, Hong J, Giraud P, Shin H S, Morris S M, Sohn J I, Cha S, Kim J M 2017 Nat. Commun. 8 14734Google Scholar

    [109]

    Wen J, Tang W, Kang Z, Liao Q, Hong M, Du J, Zhang X, Yu H, Si H, Zhang Z 2021 Adv. Sci. 8 2101417Google Scholar

    [110]

    Britnell L, Gorbachev R, Jalil R, Belle B, Schedin F, Mishchenko A, Georgiou T, Katsnelson M, Eaves L, Morozov S 2012 Science 335 947Google Scholar

    [111]

    Massicotte M, Schmidt P, Vialla F, Schädler K G, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij K J, Koppens F H L 2015 Nat. Nanotechnol. 11 42Google Scholar

    [112]

    Vu Q A, Lee J H, Nguyen V L, Shin Y S, Lim S C, Lee K, Heo J, Park S, Kim K, Lee Y H 2017 Nano Lett. 17 453Google Scholar

    [113]

    Furchi M M, Höller F, Dobusch L, Polyushkin D K, Schuler S, Mueller T 2018 NPJ 2D Mater. Appl. 2 3Google Scholar

    [114]

    Tian H, Cao X, Xie Y, Yan X, Kostelec A, DiMarzio D, Chang C, Zhao L D, Wu W, Tice J 2017 ACS Nano 11 7156Google Scholar

    [115]

    Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q, Pan A 2014 Nat. Nanotechnol. 9 1024Google Scholar

    [116]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [117]

    Jin C, Kim J, Suh J, Shi Z, Chen B, Fan X, Kam M, Watanabe K, Taniguchi T, Tongay S 2017 Nat. Phys. 13 127Google Scholar

    [118]

    Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A 2017 Sci. Adv. 3 e1603113Google Scholar

    [119]

    Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C, Seifert G 2018 Nat. Phys. 14 801Google Scholar

    [120]

    Li D, Chen M, Sun Z, Yu P, Liu Z, Ajayan P M, Zhang Z 2017 Nat. Nanotechnol. 12 901Google Scholar

    [121]

    Li H H, Xiong X L, Hui F, Yang D L, Jiang J B, Feng W X, Han J F, Duan J X, Wang Z R, Sun L F 2022 Nanotechnology 33 465601Google Scholar

    [122]

    Sun L F, Zhang Y S, Han G, Hwang G, Jiang J B, Joo B, Watanabe K, Taniguchi T, Kim Y M, Yu W J, Kong B S, Zhao R, Yang H 2019 Nat. Commun. 10 3161Google Scholar

    [123]

    Cai Z, Cao M, Jin Z, Yi K, Chen X, Wei D 2018 NPJ 2 D Mater. Appl. 2 21Google Scholar

    [124]

    Tran M D, Kim J H, Kim H, Doan M H, Duong D L, Lee Y H 2018 ACS Appl. Mater. Interfaces 10 10580Google Scholar

    [125]

    Pi L, Wang P, Liang S J, Luo P, Wang H, Li D, Li Z, Chen P, Zhou X, Miao F 2022 Nat. Electron. 5 248Google Scholar

    [126]

    Gbadamasi S, Mohiuddin M, Krishnamurthi V, Verma R, Khan M W, Pathak S, Kalantar-Zadeh K, Mahmood N 2021 Chem. Soc. Rev. 50 4684Google Scholar

    [127]

    Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H 2015 Science 349 524Google Scholar

    [128]

    Huang C, Wu S, Sanchez A M, Peters J J, Beanland R, Ross J S, Rivera P, Yao W, Cobden D H, Xu X 2014 Nat. Mater. 13 1096Google Scholar

    [129]

    He H K, Yang R, Huang H M, Yang F F, Wu Y Z, Shaibo J, Guo X 2020 Nanoscale 12 380Google Scholar

    [130]

    Wang M, Cai S, Pan C, Wang C, Lian X, Zhuo Y, Xu K, Cao T, Pan X, Wang B 2018 Nat. Electron. 1 130Google Scholar

    [131]

    Chen C, Song C, Yang J, Zeng F, Pan F 2012 Appl. Phys. Lett. 100 253509Google Scholar

    [132]

    Pickett M D, Medeiros-Ribeiro G, Williams R S 2013 Nat. Mater. 12 114Google Scholar

    [133]

    Hodgkin A L, Huxley A F 1952 Philos. Trans. R. Soc. London, Ser. B 140 177Google Scholar

    [134]

    Izhikevich E M 2003 IEEE Trans. Neural Networks 14 1569Google Scholar

    [135]

    Fourcaud-Trocmé N, Hansel D, Van Vreeswijk C, Brunel N 2003 J. Neurosci. 23 11628Google Scholar

    [136]

    Brette R, Gerstner W 2005 J. Neurophysiol. 94 3637Google Scholar

    [137]

    Jolivet R, Gerstner W 2003 Joint International Conference ICANN/ICONIP Istanbul, Turkey, June 26–29, 2003 p846

    [138]

    Deng L, Wu Y, Hu X, Liang L, Ding Y, Li G, Zhao G, Li P, Xie Y 2020 Neural Networks 121 294Google Scholar

    [139]

    Hao S, Ji X, Zhong S, Pang K Y, Lim K G, Chong T C, Zhao R 2020 Adv. Electron. Mater. 6 1901335Google Scholar

    [140]

    Dev D, Krishnaprasad A, Shawkat M S, He Z, Das S, Fan D, Chung H S, Jung Y, Roy T 2020 IEEE Electron Device Lett. 41 936Google Scholar

    [141]

    Beck M E, Shylendra A, Sangwan V K, Guo S, Rojas W A G, Yoo H, Bergeron H, Su K, Trivedi A R, Hersam M C 2020 Nat. Commun. 11 1565Google Scholar

    [142]

    Wang Z, Joshi S, Savel’ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z 2017 Nat. Mater. 16 101Google Scholar

    [143]

    Zhao H, Dong Z, Tian H, DiMarzi D, Han M G, Zhang L, Yan X, Liu F, Shen L, Han S J 2017 Adv. Mater. 29 1703232Google Scholar

    [144]

    Budiman F, Hernowo D G O, Pandey R R, Tanaka H 2018 Jpn. J. Appl. Phys. 57 03EA06Google Scholar

    [145]

    Ding G, Yang B, Chen R S, Mo W A, Zhou K, Liu Y, Shang G, Zhai Y, Han S T, Zhou Y 2021 Small 17 2103175Google Scholar

    [146]

    Zhu L Q, Wan C J, Guo L Q, Shi Y, Wan Q 2014 Nat. Commun. 5 3158Google Scholar

    [147]

    Van De Burgt Y, Lubberman E, Fuller E J, Keene S T, Faria G C, Agarwal S, Marinella M J, Alec Talin A, Salleo A 2017 Nat. Mater. 16 414Google Scholar

    [148]

    Sangwan V K, Jariwala D, Kim I S, Chen K-S, Marks T J, Lauhon L J, Hersam M C 2015 Nat. Nanotechnol. 10 403Google Scholar

    [149]

    Zhu J, Yang Y, Jia R, Liang Z, Zhu W, Rehman Z U, Bao L, Zhang X, Cai Y, Song L 2018 Adv. Mater. 30 1800195Google Scholar

    [150]

    Burr G W, Shelby R M, Sidler S, Di Nolfo C, Jang J, Boybat I, Shenoy R S, Narayanan P, Virwani K, Giacometti E U 2015 IEEE Trans. Electron Devices 62 3498Google Scholar

    [151]

    Wang S Y, Liu L, Gan L R, Chen H W, Hou X, Ding Y, Ma S L, Zhang D W, Zhou P 2021 Nat. Commun. 12 53Google Scholar

    [152]

    Jiang J, Guo J, Wan X, Yang Y, Xie H, Niu D, Yang J, He J, Gao Y, Wan Q 2017 Small 13 1700933Google Scholar

    [153]

    Bao L, Zhu J, Yu Z, Jia R, Cai Q, Wang Z, Xu L, Wu Y, Yang Y, Cai Y 2019 ACS Appl. Mater. Interfaces 11 41482Google Scholar

    [154]

    Gao J, Lian X, Chen Z X, Shi S, Li E L, Wang Y A, Jin T Y, Chen H P, Liu L, Chen J S, Zhu Y, Chen W 2022 Adv. Funct. Mater. 32 2110415Google Scholar

    [155]

    Caporale N, Dan Y 2008 Annu. Rev. Neurosci. 31 25Google Scholar

    [156]

    Sun L, Wang W, Yang H 2020 Adv. Intell. Syst. 2 1900167Google Scholar

    [157]

    Li Y, Zhong Y P, Zhang J J, Xu L, Wang Q, Sun H J, Tong H, Cheng X M, Miao X S 2014 Sci. Rep. 4 4906Google Scholar

    [158]

    Majumdar S, Tan H, Pande I, Van Dijken S 2019 APL Mater. 7 091114Google Scholar

    [159]

    Zappacosta S, Mannella F, Mirolli M, Baldassarre G 2018 PLoS Comput. Biol. 14 e1006227Google Scholar

    [160]

    Lee G, Baek J H, Ren F, Pearton S J, Lee G H, Kim J 2021 Small 17 2100640Google Scholar

    [161]

    Chen L, Wang L, Peng Y, Feng X, Sarkar S, Li S, Li B, Liu L, Han K, Gong X 2020 Adv. Electron. Mater. 6 2000057Google Scholar

    [162]

    Tang J, Yuan F, Shen X, Wang Z, Rao M, He Y, Sun Y, Li X, Zhang W, Li Y 2019 Adv. Mater. 31 1902761Google Scholar

    [163]

    Rachmuth G, Shouval H Z, Bear M F, Poon C S 2011 Proc. Natl. Acad. Sci. U.S.A. 108 E1266Google Scholar

    [164]

    Wang X, Wang B, Zhang Q, Sun Y, Wang E, Luo H, Wu Y, Gu L, Li H, Liu K 2021 Adv. Mater. 33 2102435Google Scholar

    [165]

    Liu Y, Li E, Wang X, Chen Q, Zhou Y, Hu Y, Chen G, Chen H, Guo T 2020 Nano Energy 78 105403Google Scholar

    [166]

    Feng X, Li Y, Wang L, Chen S, Yu Z G, Tan W C, Macadam N, Hu G, Huang L, Chen L 2019 Adv. Electron. Mater. 5 1900740Google Scholar

    [167]

    Seo S, Kang B S, Lee J J, Ryu H J, Kim S, Kim H, Oh S, Shim J, Heo K, Oh S, Park J H 2020 Nat. Commun. 11 3936Google Scholar

    [168]

    Yan X, Zhao J, Liu S, Zhou Z, Liu Q, Chen J, Liu X Y 2018 Adv. Funct. Mater. 28 1705320Google Scholar

    [169]

    Ryu J H, Kim B, Hussain F, Ismail M, Mahata C, Oh T, Imran M, Min K K, Kim T H, Yang B D 2020 IEEE Access 8 130678Google Scholar

    [170]

    Sun J, Oh S, Choi Y, Seo S, Oh M J, Lee M, Lee W B, Yoo P J, Cho J H, Park J H 2018 Adv. Funct. Mater. 28 1804397Google Scholar

    [171]

    Jin C, Liu W, Huang Y, Xu Y, Nie Y, Zhang G, He P, Sun J, Yang J 2022 Appl. Phys. Lett. 120 233701Google Scholar

    [172]

    Jin C, Liu W, Xu Y, Huang Y, Nie Y, Shi X, Zhang G, He P, Zhang J, Cao H 2022 Nano Lett. 22 3372Google Scholar

    [173]

    Kwon S M, Cho S W, Kim M, Heo J S, Kim Y H, Park S K 2019 Adv. Mater. 31 1906433Google Scholar

    [174]

    Qiu W, Huang Y, Kong L A, Chen Y, Liu W, Wang Z, Sun J, Wan Q, Cho J H, Yang J 2020 Adv. Funct. Mater. 30 2002325Google Scholar

    [175]

    Wang J, Chen Y, Kong L A, Fu Y, Gao Y, Sun J 2018 Appl. Phys. Lett. 113 151101Google Scholar

    [176]

    Chen Y, Qiu W, Wang X, Liu W, Wang J, Dai G, Yuan Y, Gao Y, Sun J 2019 Nano Energy 62 393Google Scholar

    [177]

    Fang L, Dai S, Zhao Y, Liu D, Huang J 2020 Adv. Electron. Mater. 6 1901217Google Scholar

    [178]

    Lee S H, Park H L, Kim M H, Kim M H, Park B G, Lee S D 2020 ACS Appl. Mater. Interfaces 12 51719Google Scholar

    [179]

    Jung K H, Yeon C, Yang J, Cheon Y J, Lim J W, Yun S J 2021 ACS Appl. Mater. Interfaces 13 8919Google Scholar

    [180]

    Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, Wang L, Ran Y, Guo Y, Hu W 2018 Adv. Mater. 30 1803961Google Scholar

    [181]

    Qian C, Sun J, Kong L A, Gou G, Yang J, He J, Gao Y, Wan Q 2016 ACS Appl. Mater. Interfaces 8 26169Google Scholar

    [182]

    Guo R, Zhou Y, Wu L, Wang Z, Lim Z, Yan X, Lin W, Wang H, Yoong H Y, Chen S 2018 ACS Appl. Mater. Interfaces 10 12862Google Scholar

    [183]

    Yoon C, Lee J H, Lee S, Jeon J H, Jang J T, Kim D H, Kim Y H, Park B H 2017 Nano Lett. 17 1949Google Scholar

    [184]

    Boyn S, Grollier J, Lecerf G, Xu B, Locatelli N, Fusil S, Girod S, Carrétéro C, Garcia K, Xavier S, Tomas J, Bellaiche L, Bibes M, Barthelemy A, Saighi S, Garcia V 2017 Nat. Commun. 8 14736Google Scholar

    [185]

    Yang J M, Choi E S, Kim S Y, Kim J H, Park J H, Park N G 2019 Nanoscale 11 6453Google Scholar

    [186]

    Cao G, Meng P, Chen J, Liu H, Bian R, Zhu C, Liu F, Liu Z 2021 Adv. Funct. Mater. 31 2005443Google Scholar

    [187]

    Ji X, Zhao X, Tan M C, Zhao R 2020 Adv. Intell. Syst. 2 1900118Google Scholar

    [188]

    Liu S, Wang Y, Fardad M, Varshney P K 2018 IEEE Circuits Syst. Mag. 18 29Google Scholar

    [189]

    Yoon J H, Wang Z R, Kim K M, Wu H Q, Ravichandran V, Xia Q F, Hwang C S, Yang J J 2018 Nat. Commun. 9 417Google Scholar

    [190]

    Yu S, Wu Y, Jeyasingh R, Kuzum D, Wong H S P 2011 IEEE Trans. Electron Devices 58 2729Google Scholar

    [191]

    Prezioso M, Merrikh-Bayat F, Hoskins B, Adam G C, Likharev K K, Strukov D B 2015 Nature 521 61Google Scholar

    [192]

    Wang C, Liang S J, Wang C Y, Yang Z Z, Ge Y, Pan C, Shen X, Wei W, Zhao Y, Zhang Z 2021 Nat. Nanotechnol. 16 1079Google Scholar

    [193]

    Wang C Y, Liang S J, Wang S, Wang P, Li Z A, Wang Z, Gao A, Pan C, Liu C, Liu J 2020 Sci. Adv. 6 eaba6173Google Scholar

    [194]

    Zhou F, Zhou Z, Chen J, Choy T H, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H S P 2019 Nat. Nanotechnol. 14 776Google Scholar

    [195]

    Sun L, Wang Z, Jiang J, Kim Y, Joo B, Zheng S, Lee S, Yu W J, Kong B S, Yang H 2021 Sci. Adv. 7 eabg1455Google Scholar

    [196]

    Du J, Xie D, Zhang Q, Zhong H, Meng F, Fu X, Sun Q, Ni H, Li T, Guo E J 2021 Nano Energy 89 106439Google Scholar

    [197]

    Admoni H, Scassellati B 2017 J. Hum. Robot Interact. 6 25Google Scholar

    [198]

    Yang G Z, Bellingham J, Dupont P E, Fischer P, Floridi L, Full R, Jacobstein N, Kumar V, McNutt M, Merrifield R, Nelson B J 2018 The Grand Challenges of Science Robotics. Sci. Robot. 3 eaar7650Google Scholar

    [199]

    Agmon-Snir H, Carr C E, Rinzel J 1998 Nature 393 268Google Scholar

    [200]

    Dabdoub A, Fritzsch B 2016 Audit. Neur. Their Net. 52 1Google Scholar

    [201]

    Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F 2014 Nature 514 470Google Scholar

    [202]

    Chen Y, Gao G, Zhao J, Zhang H, Yu J, Yang X, Zhang Q, Zhang W, Xu S, Sun J 2019 Adv. Funct. Mater. 29 1900959Google Scholar

    [203]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [204]

    任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇 2021 70 078701Google Scholar

    Ren K, Zhang K J, Qin X Z, Ren H X, Zhu S H, Yang F, Sun B, Zhao Y, Zhang Y 2021 Acta Phys. Sin 70 078701Google Scholar

    [205]

    任宽, 张握瑜, 王菲, 郭泽钰, 尚大山 2022 71 140701Google Scholar

    Ren K, Zhang W Y, Wang F, Guo Z Y, Shang D S 2022 Acta Phys. Sin 71 140701Google Scholar

    [206]

    Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K, Gorbachev R 2012 Nat. Mater. 11 764Google Scholar

    [207]

    Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C, McDonnell S, Colombo L, Vogel E, Ruoff R, Wallace R 2011 Appl. Phys. Lett. 99 122108Google Scholar

    [208]

    Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y 2011 Nano Lett. 11 767Google Scholar

    [209]

    Goossens A, Calado V, Barreiro A, Watanabe K, Taniguchi T, Vandersypen L 2012 Appl. Phys. Lett. 100 073110Google Scholar

    [210]

    Fan S, Vu Q A, Tran M D, Adhikari S, Lee Y H 2020 2 D Mater. 7 022005Google Scholar

    [211]

    Salahuddin S, Ni K, Datta S 2018 Nat. Electron. 1 442Google Scholar

    [212]

    Cai Z, Liu B, Zou X, Cheng H M 2018 Chem. Rev. 118 6091Google Scholar

    [213]

    Jang J, Son M, Chung S, Kim K, Cho C, Lee B H, Ham M H 2015 Sci. Rep. 5 17955Google Scholar

    [214]

    Sun L, Yuan G, Gao L, Yang J, Chhowalla M, Gharahcheshmeh M H, Gleason K K, Choi Y S, Hong B H, Liu Z 2021 Nat. Rev. Methods Primers 1 5Google Scholar

    [215]

    Das S, Sebastian A, Pop E, McClellan C J, Franklin A D, Grasser T, Knobloch T, Illarionov Y, Penumatcha A V, Appenzeller J 2021 Nat. Electron. 4 786Google Scholar

    [216]

    Wang Y, Liu S, Li Q, Quhe R, Yang C, Guo Y, Zhang X, Pan Y, Li J, Zhang H 2021 Rep. Prog. Phys. 84 056501Google Scholar

    [217]

    Bernstein K, Cavin R K, Porod W, Seabaugh A, Welser J 2010 Proc. IEEE 98 2169Google Scholar

  • 图 1  基于2D材料的忆阻器工作机制示意图, 其中包括经典效应, 如相变效应、铁电效应, 以及量子效应, 如导电细丝效应、氧空位效应、电荷捕获效应、隧穿效应、vdWs效应等

    Fig. 1.  Schematic diagram of physical working mechanisms of memristor based on 2D materials, including classical effects, such as phase change effect, ferroelectric effect, and quantum effect, like conductive filament effect, oxygen vacancy effect, charge trapping effect, tunneling effect, vdWs effect, etc.

    图 2  相变效应 (a) Au/MoS2/Au器件结构示意图以及在电场作用下Li+调控MoS2发生可逆相变过程的示意图[40]; (b) Au/MoS2/Au器件的I-V特性曲线[40]; (c) 通过脉冲编程电压改变电导增量[40]; (d) MoTe2在电场作用下的相变过程以及MoTe2在2H (左下)和2Hd (右下)态下的STEM图像[41]; (e) 电形成过程前后的I-V扫描曲线[41]

    Fig. 2.  Phase change effect: (a) Schematic diagram of Au/MoS2/Au device structure and Li+ regulating the reversible phase change process of MoS2 under the applied electric field[40]; (b) typical I-V curve of Au/MoS2/Au device[40]; (c) conductance changing with continuous pulse programming voltage[40]; (d) phase change process of MoTe2 with electric field applied and the STEM images of 2H (bottom left) and 2Hd (bottom right) states of MoTe2[41]; (e) I-V curves of devices before and after forming processes[41].

    图 3  铁电效应 (a) 基于α-In2Se3的FeSFET器件示意图[43]; (b) α-In2Se3沟道材料向上和向下极化时的状态图示, 以及相应的能带图[43]; (c) 不同Vg扫描下器件传输特性曲线[43]; (d) 器件在5个连续的周期脉冲电压下稳定突触后电流(PSC)的增强、抑制效果图[43]

    Fig. 3.  Ferroelectric effect: (a) Schematic of the α-In2Se3 based FeSFET[43]; (b) illustrations of the upward and downward polarized states of α-In2Se3 channel material and the corresponding energy band diagram[44]; (c) device transfer characteristic curves under different scanning ranges of Vg[43]; (d) the potentiation and depression process of the post-synaptic-current (PSC) under 5 continuous periodic voltage pulses[43].

    图 4  导电细丝效应 (a) Ag/SnOx/SnSe器件示意图以及器件的横截面TEM图像[78]; (b) 忆阻器的保持性超过105 s[78]; (c) Ag/SnOx/SnSe器件初始状态、导电细丝形成和断裂的示意图[78]; 在CDG (d)和DDG (e)器件中导电细丝形成和断裂示意图[83]

    Fig. 4.  Conductive filament effect: (a) Schematic of Ag/SnOx/SnSe device and the cross-sectional TEM image of the interface[78]; (b) the retention of the device over 105 s[78]; (c) schematic of Ag/SnOx/SnSe device at initial state, conductive filament formation process and fracture state[78]; schematic of conductive filament formation and rupture in CDG (d) and DDG (e) device[83].

    图 5  氧空位效应 (a) Ti/HfSexOy/HfSe2/Au忆阻器示意图[50]; (b) 器件的电学特性: 在低工作电流(100 nA)下, 器件的I-V曲线[50]; (c) 锥形氧空位通道在电压调控下形成和断裂的过程[50]; (d) Pd/WS2/Pt器件结构示意图[49]; (e) 文献中报道的不同的编程或SET电流的比较[49]

    Fig. 5.  Oxygen vacancy effect: (a) Schematic of Ti/HfSexOy/HfSe2/Au memristor; (b) electrical characteristics of the device: I-V curves of the device at low operating current (100 nA) [50]; (c) the formation and rupture of conical oxygen vacancy channels under voltage regulation[50]; (d) schematic of the Pd/WS2/Pt device[49]; (e) comparison of various programs or SET currents reported in the literatures[49].

    图 6  隧穿效应 (a) 基于MoS2的多端器件的示意图[55]; (b) 浮栅/h-BN/漏极的能带图[55]; (c) 基于MoS2的多端器件在Vds = 1 V的传输特性[55]; (d) 在不同Vds下的开关行为[55]; (e) 基于三端器件的突触示意图[55]; (f) 不同Vg下多端突触器件重复性增强和抑制行为的对数图[55]

    Fig. 6.  Tunneling effect: (a) Schematic diagram of the MoS2-based multi-terminal device[55]; (b) band diagram of floating-gate/h-BN/drain[55]; (c) transmission characteristics of multi-terminal device based MoS2 at Vds = 1 V[55]; (d) switching behavior at different Vds[55]; (e) schematic diagram of a synapse based on a three-terminal device[55]; (f) logarithmic plots of repetitive potentiation and inhibitory behavior of multiterminal synaptic apparatus under different Vg[55].

    图 7  电荷的捕获与释放 (a) 基于2D MoTe2的忆阻器结构示意图[53]; (b) 在Vg(–40 V→40 V→–40 V)扫描电压下器件的传输特性曲线(插图为在对数坐标下的I-V曲线)[53]; (c) 2D MoTe2的忆阻器工作机制示意图[53]; (d) 生物突触和基于sr-SiNx的人工突触器件的示意图; (e) 100个周期内增强(左)和抑制(右)周期性电导的变化[53]

    Fig. 7.  Charge trapping and de-trapping effects: (a) Schematic diagram of the memristor structure based on 2D MoTe2[53]; (b) the transfer characteristic curve of the device under the scanning voltage of Vg (–40 V→40 V→–40 V) (the illustration is the same curve shown in logarithmic coordinates) [53]; (c) the working mechanism of the device[53]; (d) schematic illustration of biological synapses and sr-SiNx-based artificial synaptic device[53]; (e) the conductance periodic changes in excitation (left) and inhibition (right) over 100 cycles[53].

    图 8  横向vdWs异质结 (a) 基于2D WSe2-WO3横向异质结构的器件示意图[129]; (b) 由Gate 1调节的电阻开关特性[129]; (c) WSe2-WO3横向异质结构的光学图像[129]; (d) Pd-WSe2-Pd(电极4和5)、Pd-WO3-Pd(电极1和2)和Pd-WSe2-WO3-Pd(电极3和4)的I-V特性曲线[129]; (e), (f) 开关原理的示意图, 其中红色圆圈代表质子[129]

    Fig. 8.  Lateral vdWs heterostructure: (a) Schematic diagram of the device based on the 2D WSe2-WO3 lateral heterostructure[129]; (b) resistive switching characteristics regulated by Gate 1 voltage[129]; (c) optical image of WSe2-WO3 lateral heterostructure[129]; (d) I-V characteristic curves of Pd-WSe2-Pd (electrodes 4 and 5), Pd-WO3-Pd (electrodes 1 and 2) and Pd-WSe2-WO3-Pd (electrodes 3 and 4) [129]; (e), (f) schematic of the switching principle, where the red circles represent protons[129].

    图 9  垂直vdWs异质结 (a) 基于MoS2–xOx/Gr异质结的器件示意图[130]; (b) 器件在不同温度下的开关曲线[130]; (c) 器件在340和160 ℃下的保持时间[130]

    Fig. 9.  Vertical vdWs heterojunction: (a) Schematic diagram of the device based on MoS2–xOx/Gr heterojunction[130]; (b) switching curves of the device at different temperatures[130]; (c) retention time of device at 340 and 160 ℃ [130].

    图 10  LIF模型神经元 (a) 平面器件Ag/MoS2/TiW 示意图[139]; (b) 器件在连续脉冲序列下的泄漏-集成-发射的电学行为[139]; (c) 器件在1 ms、电压为2.0 V的单脉冲下的易失性开关行为[139]; (d) 垂直器件Ag/MoS2/Au的结构示意图和光学图片[140]; (e) 上图为Ag/MoS2/Au人工神经元的电路图, 下图为神经元的连续输出电流尖峰[140]; (f) 上图为电路图节点B处的电压VB, 下图为负载电阻RL 两端的电压VRL[140]

    Fig. 10.  LIF model neurons: (a) Schematic diagram of planar device Ag/MoS2/TiW[139]; (b) leakage-integration-emission electrical behavior of device under continuous pulse trains[139]; (c) volatile switching behavior of the device with a single pulse of 2.0 V at 1 ms[139]; (d) schematic diagram and optical picture of the vertical device Ag/MoS2/Au[140]; (e) the top picture is the circuit diagram of the Ag/MoS2/Au artificial neuron, and the picture below is the continuous output current spike of the neuron[140]; (f) the picture in the top panel shows the voltage VB at node B of the circuit diagram, and the picture in the bottom panel shows the voltage VRL across the load resistance RL[140].

    图 11  H-H尖峰神经元 (a) 器件的光学图片示意图[141]; (b) 器件结构示意图[141]; (c) H-H模型神经元的电路等效图[141]; (d) H-H模型中gK的时间演变关系图[141]; (e) H-H 模型中gNa的时间演变关系图[141]; (f) GHeT神经元的完整电路图[141]; (g) 图(d)中的 GHeT神经元电路的前30 s的实验结果[141]

    Fig. 11.  H-H spiking neurons: (a) Optical image of the device[141]; (b) the schematic of device structure[141]; (c) equivalent circuit diagram of H-H model neuron[141]; (d) time evolution diagram of gK in H-H model[141]; (e) time evolution diagram of gNa in H-H model[141]; (f) complete circuit diagram of a GHeT neuron[141]; (g) experimental results for the first 30 s of the GHeT neuron circuit in panel (d) [141]

    图 12  LTSP (a) 人工突触器件示意图[42]; (b) 重复进行LTP和LTD操作, 一个周期是100个增强脉冲和随后的100个抑制脉冲. 左上图和右上图分别对应最初10个循环和最后10个循环的运行情况[42]; (c) 离子门控突触晶体管的示意图[149]; (d) 生物系统(上)和离子门控突触晶体管(下)中离子迁移和动态平衡过程[149]; (e) 一系列电压脉冲(5 V, 50 ms)施加到栅极(Vds = 0.5 V)时, 实现从STSP到LTSP的转换[149]; (f) 对基于WSe2的突触晶体管使用增强(1.2 V, 100 ms)和抑制(–0.4 V, 100 ms)脉冲信号, 间隔3 s, 显示出良好的线性、对称性和重复性[149]

    Fig. 12.  LTSP: (a) Schematic diagram of artificial synapse[42]; (b) the LTP and LTD operations were repeated with a cycle of 100 enhancement pulses followed by 100 inhibition pulses; the upper left and upper right diagrams correspond to the operation of the first 10 cycles and the last 10 cycles, respectively[42]; (c) schematic of an ion-gated synaptic transistor[149]; (d) ion migration and dynamic equilibrium in biological systems (top) and ion-gated synaptic transistors (bottom)[149]; (e) when a series of voltage pulses (5 V, 50 ms) are applied to the gate (Vds = 0.5 V), the transition occurs from STSP to LTSP[149]; (f) by using excitatory (1.2 V, 100 ms) and inhibitory (–0.4 V, 100 ms) pulsed signals with 3 s intervals for WSe2-based synaptic transistors, the device shows good linearity, symmetry, and reproducibility[149].

    图 13  STSP (a) 生物突触示意图; (b) PPD指数和 PPF指数与Δt的函数关系图[26]; (c) IPSC 和 (d) EPSC效果示意图

    Fig. 13.  STSP: (a) Schematic diagram of a biological synapse; (b) PPD index and PPF index are shown as the function of Δt[26]; (c) IPSC and (d) EPSC effect diagram.

    图 14  STDP和SRDP (a) 四种STDP模型突触权重变化的示意图; (b) 典型的STDP模型. 突触前电流(兴奋性)和IPSC的相对时间前后影响突触权重产生LTP和LTD; (c) 典型的SRDP模型, 尖峰频率的大小带来的突触权重的变化

    Fig. 14.  STDP and SRDP: (a) Schematic diagram of synaptic weight changes of the four STDP models; (b) typical STDP model. Influence synaptic weights to generate LTP and LTD on relative timing of presynaptic currents (excitatory) and IPSCs; (c) typical SRDP model; changes of synaptic weights caused by the magnitude of the spike frequency.

    图 15  视觉识别 (a) 人体视觉系统的示意图[194]; (b) 基于ORRAM阵列的人工神经形态视觉系统, 以及用于图像识别的人工神经网络示意图[194]; (c) 人工神经形态视觉系统预处理之前(左)和之后(右)的图像示例[194]; (d) 有/无图像预处理的图像识别率比较[194]; (e) 在生物RC系统上执行的认知任务示意图[195]; (f) 由电和光输入刺激的多功能忆阻器阵列示意图; (g) 对语言符号的识别准确率[195]

    Fig. 15.  Visual recognition: (a) Schematic diagram of the human visual system[194]; (b) artificial neuromorphic vision system based on ORRAM array, and artificial neural network for image recognition[194]; (c) images before (left) and after (right) preprocessing through an artificial neuromorphic vision system[194]; (d) comparison of image recognition rates with and without image preprocessing[194]; (e) schematic diagram of cognitive tasks performed on biological RC systems[195]; (f) illustration of a multifunctional memristor array stimulated by various electrical and optical inputs; (g) recognition accuracy of language sign[195].

    图 16  声音定位与模式识别 (a) ITD和ILD的声音定位示意图[26]; (b) 电压扫描下焦耳热驱动的电导变化; (c) 两个连续脉冲刺激后的PPF和PPD指数与Δt的函数关系图[26]; (d) 基于ITD的声音定位的突触计算工作机制示意图; “CA”指图(a)所示的耳蜗, 蓝色的圆圈代表神经元, 水平虚线代表神经元放电的潜在阈值[26]; (e) 生物突触与vdWs混合突触器件的功能和结构比较[167]; (f) 基于三种人工神经网络的声学模式识别率, 并与SW-NN的识别率进行比较[167]

    Fig. 16.  Sound localization and pattern recognition: (a) Schematic diagram of sound localization of ITD and ILD[26]; (b) joule heat driven conductivity change under the sweep voltage[26]; (c) the pulse intervals dependent PPF and PPD indexes stimulated by two consecutive pulses[26]; (d) schematic diagram of the synaptic computing of ITD-based sound localization; “CA” refers to the cochlea shown in panel (a); the blue circles represent neurons; horizontal dashed lines represent potential thresholds for neuronal firing[26]; (e) comparison of function and structure between biological synapses and vdWs hybrid synaptic devices[167]; (f) acoustic pattern recognition rates based on three artificial neural networks with compared results achieved by the SW-NN recognition rate[167].

    图 17  触觉模拟 (a) 生物触觉神经系统[202]; (b) 带有离子凝胶门控晶体管的 PENG 示意图[202]; (c) 压电Gr人工触觉突触工作原理[202]; (d) PSC幅度与应变脉冲数的关系图[202]

    Fig. 17.  Tactile mimicking: (a) Biological sensory nervous system[202]; (b) schematic diagram of a PENG with iongel-gated transistors[202]; (c) the working principle of piezoelectric Gr artificial sensory synapse[202]; (d) PSC amplitude shown as the function of strain-pulse number[202].

    表 1  不同材料的人工突触器件性能对比

    Table 1.  Performance comparison of artificial synaptic devices based on different materials.

    材料突触可塑性耐久性
    (循环)
    保持性功耗/能耗刺激方式文献
    2D材料MoS2LTP, LTD, PPF, SRDP100>11 h4.5 fJ[166]
    h-BN/WSe2LTP, LTD, STDP66 fJ光电[167]
    SnSeLTP, LTD, PPF, STDP230>104 s66 fJ[44]
    MoTe2LTP, LTD, PPF, STDP570>104 s[53]
    氧化物材料TiO2LTP, LTD, PPF, STDP26 pJ[168]
    ZTOLTP, LTD, STDP104 s[169]
    IGZOLTP, LTD160 pJ光电[170]
    In2O3LTP, LTD, PPF, SRDP20[171]
    有机材料C8-BTBTLTP, LTD105>3500 s<5  fJ[177]
    PMMALTP, LTD, PPF, SRDP, STDP


    >103 s10-8 W[178]
    PVAPPF, LTP, LTD, LTM600 s[179]
    P(VDF-TrFE)
    /P(VP-EDMAEMAES)
    LTP, LTD, PPF75 pJ[180]
    钙钛矿材料BaTiO3STDP105108 s600 pJ[182]
    PdZr0.52Ti0.48O3SRTP, LSTP2.5 pJ[183]
    BiFeO3STDP200 nW[184]
    (CH3NH3)3Sb2Br9LTP, LTD, STDP300104 s117.9 fJ[185]
    下载: 导出CSV
    Baidu
  • [1]

    Liu C, Chen H, Wang S, Liu Q, Jiang Y G, Zhang D W, Liu M, Zhou P 2020 Nat. Nanotechnol. 15 545Google Scholar

    [2]

    Horowitz M 2014 IEEE Int. Solid-State Circuits Conf. Digest Tech. Papers (ISSCC) San Francisco, USA, February 9–13, 2014 p10

    [3]

    Gibney E 2017 Nat. News 541 142Google Scholar

    [4]

    Fukuda S 2020 World 2.0: From Working for Others to Working for Yourself (Berlin: Springer) p34

    [5]

    Zhang E, Wang W, Zhang C, Jin Y, Zhu G, Sun Q, Zhang D W, Zhou P, Xiu F 2015 ACS Nano 9 612Google Scholar

    [6]

    Zhou G D, Wang Z R, Sun B, Zhou F C, Sun L F, Zhao H B, Hu X F, Peng X Y, Yan J, Wang H M, Wang W H, Li J, Yan B T, Kuang D L, Wang Y C, Wang L D, Duan S K 2022 Adv. Electron. Mater. 8 2101127Google Scholar

    [7]

    Li H, Wang S, Zhang X, Wang W, Yang R, Sun Z, Feng W, Lin P, Wang Z, Sun L 2021 Adv. Intell. Syst. 3 2100017Google Scholar

    [8]

    Sun L, Yu H, Wang D, Jiang J, Kim D, Kim H, Zheng S, Zhao M, Ge Q, Yang H 2018 2D Mater. 6 015029Google Scholar

    [9]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [10]

    邵楠, 张盛兵, 邵舒渊 2019 68 198502Google Scholar

    Shao N, Zhang S B, Shao S Y 2019 Acta Phys. Sin. 68 198502Google Scholar

    [11]

    Wang Z R, Rao M Y, Han J W, Zhang J M, Lin P, Li Y N, Li C, Song W H, Asapu S, Midya R, Jiang H, Yoon J H, Upadhyay N K, Qiu Q R, Williams R S, Xia Q F, Yang J J 2018 Nat. Commun. 9 3208Google Scholar

    [12]

    Chua L 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [13]

    Yang D, Yang H, Guo X, Zhang H, Jiao C, Xiao W, Guo P, Wang Q, He D 2020 Adv. Funct. Mater. 30 2004514Google Scholar

    [14]

    Yang H, Wang Z, Guo X, Su H, Sun K, Yang D, Xiao W, Wang Q, He D 2020 ACS Appl. Mater. Interfaces 12 34370Google Scholar

    [15]

    Guo X, Wang Q, Lü X, Yang H, Sun K, Yang D, Zhang H, Hasegawa T, He D 2020 Nanoscale 12 4320Google Scholar

    [16]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [17]

    刘益春, 林亚, 王中强, 徐海阳 2019 68 168504Google Scholar

    Liu Y C, Lin Y, Wang Z Q, Xu H Y 2019 Acta Phys. Sin. 68 168504Google Scholar

    [18]

    Zhou Y, Li Y, Xu L, Zhong S, Sun H, Miao X 2015 Appl. Phys. Lett. 106 233502Google Scholar

    [19]

    Li C, Hu M, Li Y, Jiang H, Ge N, Montgomery E, Zhang J, Song W, Dávila N, Graves C E 2018 Nat. Electron. 1 52Google Scholar

    [20]

    Abuelma’atti M T, Khalifa Z J 2015 AEU-Int. J. Electron. C. 69 771Google Scholar

    [21]

    Wang Z, Wang L, Nagai M, Xie L, Yi M, Huang W 2017 Adv. Electron. Mater. 3 1600510Google Scholar

    [22]

    余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 67 157302Google Scholar

    Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar

    [23]

    Chang T, Jo S H, Lu W 2011 ACS Nano 5 7669Google Scholar

    [24]

    Xing Z W, Wu N J, Ignatiev A 2007 Appl. Phys. Lett. 91 052106Google Scholar

    [25]

    Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C, Zhu X J 2012 Adv. Funct. Mater. 22 2759Google Scholar

    [26]

    Sun L, Zhang Y S, Hwang G, Jiang J, Kim D, Eshete Y A, Zhao R, Yang H 2018 Nano Lett. 18 3229Google Scholar

    [27]

    Al-Saleh M H, Al-Anid H K, Husain Y A, El-Ghanem H M, Jawad S A 2013 J. Phys. D:Appl. Phys. 46 385305Google Scholar

    [28]

    Terabe K, Hasegawa T, Nakayama T, Aono M 2005 Nature 433 47Google Scholar

    [29]

    Hasegawa T, Terabe K, Tsuruoka T, Aono M 2012 Adv. Mater. 24 252Google Scholar

    [30]

    Pan C, Wang C Y, Liang S J, Wang Y, Cao T, Wang P, Wang C, Wang S, Cheng B, Gao A 2020 Nat. Electron. 3 383Google Scholar

    [31]

    Wang S, Pan X, Lyu L, Wang C Y, Wang P, Pan C, Yang Y, Wang C, Shi J, Cheng B 2022 ACS Nano 16 4528Google Scholar

    [32]

    Sun L, Yan J, Zhan D, Liu L, Hu H, Li H, Tay B K, Kuo J L, Huang C C, Hewak D W 2013 Phys. Rev. Lett. 111 126801Google Scholar

    [33]

    Lee C H, Lee G H, Van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F 2014 Nat. Nanotechnol. 9 676Google Scholar

    [34]

    Lin Z, Liu Y, Halim U, Ding M, Liu Y, Wang Y, Jia C, Chen P, Duan X, Wang C 2018 Nature 562 254Google Scholar

    [35]

    Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696Google Scholar

    [36]

    Chen S, Mahmoodi M R, Shi Y, Mahata C, Yuan B, Liang X, Wen C, Hui F, Akinwande D, Strukov D B 2020 Nat. Electron. 3 638Google Scholar

    [37]

    Wang M, Wang C Y, Wu C, Li Q, Pan C, Wang C, Liang S J, Miao F 2019 Adv. Electron. Mater. 5 1800853Google Scholar

    [38]

    Chen H, Xue X, Liu C, Fang J, Wang Z, Wang J, Zhang D W, Hu W, Zhou P 2021 Nat. Electron. 4 399Google Scholar

    [39]

    Fu X, Zhang L, Cho H D, Kang T W, Fu D, Lee D, Lee S W, Li L, Qi T, Chan A S 2019 Small 15 1903809Google Scholar

    [40]

    Zhu X, Li D, Liang X, Lu W D 2019 Nat. Mater. 18 141Google Scholar

    [41]

    Zhang F, Zhang H, Krylyuk S, Milligan C A, Zhu Y, Zemlyanov D Y, Bendersky L A, Burton B P, Davydov A V, Appenzeller J 2019 Nat. Mater. 18 55Google Scholar

    [42]

    Kwon K C, Zhang Y, Wang L, Yu W, Wang X, Park I H, Choi H S, Ma T, Zhu Z, Tian B 2020 ACS Nano 14 7628Google Scholar

    [43]

    Wang L, Wang X, Zhang Y, Li R, Ma T, Leng K, Chen Z, Abdelwahab I, Loh K P 2020 Adv. Funct. Mater. 30 2004609Google Scholar

    [44]

    Wang H, Lu W, Hou S, Yu B, Zhou Z, Xue Y, Guo R, Wang S, Zeng K, Yan X 2020 Nanoscale 12 21913Google Scholar

    [45]

    Jang B C, Kim S, Yang S Y, Park J, Cha J H, Oh J, Choi J, Im S G, Dravid V P, Choi S Y 2019 Nano Lett. 19 839Google Scholar

    [46]

    Xu R, Jang H, Lee M H, Amanov D, Cho Y, Kim H, Park S, Shin H J, Ham D 2019 Nano Lett. 19 2411Google Scholar

    [47]

    Yan X, Qin C, Lu C, Zhao J, Zhao R, Ren D, Zhou Z, Wang H, Wang J, Zhang L 2019 ACS Appl. Mater. Interfaces 11 48029Google Scholar

    [48]

    Wu X, Ge R, Chen P A, Chou H, Zhang Z, Zhang Y, Banerjee S, Chiang M H, Lee J C, Akinwande D 2019 Adv. Mater. 31 1806790Google Scholar

    [49]

    Yan X, Zhao Q, Chen A P, Zhao J, Zhou Z, Wang J, Wang H, Zhang L, Li X, Xiao Z 2019 Small 15 1901423Google Scholar

    [50]

    Liu L, Li Y, Huang X, Chen J, Yang Z, Xue K H, Xu M, Chen H, Zhou P, Miao X 2021 Adv. Sci. 8 2005038Google Scholar

    [51]

    Vu Q A, Shin Y S, Kim Y R, Nguyen V L, Kang W T, Kim H, Luong D H, Lee I M, Lee K, Ko D S, Heo J, Park S, Lee Y H, Yu W J 2016 Nat. Commun. 7 12725Google Scholar

    [52]

    Liu C, Yan X, Song X, Ding S, Zhang D W, Zhou P 2018 Nat. Nanotechnol. 13 404Google Scholar

    [53]

    Xiang D, Liu T, Zhang X, Zhou P, Chen W 2021 Nano Lett. 21 3557Google Scholar

    [54]

    Jin T, Zheng Y, Gao J, Wang Y, Li E, Chen H, Pan X, Lin M, Chen W 2021 ACS Appl. Mater. Interfaces 13 10639Google Scholar

    [55]

    He C, Tang J, Shang D S, Tang J, Xi Y, Wang S, Li N, Zhang Q, Lu J K, Wei Z 2020 ACS Appl. Mater. Interfaces 12 11945Google Scholar

    [56]

    Wang S, Chen C, Yu Z, He Y, Chen X, Wan Q, Shi Y, Zhang D W, Zhou H, Wang X 2019 Adv. Mater. 31 1806227Google Scholar

    [57]

    Tran M D, Kim H, Kim J S, Doan M H, Chau T K, Vu Q A, Kim J H, Lee Y H 2019 Adv. Mater. 31 1807075Google Scholar

    [58]

    Qin S, Wang F, Liu Y, Wan Q, Wang X, Xu Y, Shi Y, Wang X, Zhang R 2017 2 D Mater. 4 035022Google Scholar

    [59]

    Ma Y, Liu B, Zhang A, Chen L, Fathi M, Shen C, Abbas A N, Ge M, Mecklenburg M, Zhou C 2015 ACS Nano 9 7383Google Scholar

    [60]

    Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K 2015 Science 349 625Google Scholar

    [61]

    Lin Y C, Dumcenco D O, Huang Y S, Suenaga K 2014 Nat. Nanotechnol. 9 391Google Scholar

    [62]

    Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M 2014 Nat. Mater. 13 1128Google Scholar

    [63]

    Loke D, Lee T, Wang W, Shi L, Zhao R, Yeo Y, Chong T, Elliott S 2012 Science 336 1566Google Scholar

    [64]

    Jeon H, Kim S G, Park J, Kim S H, Park E, Kim J, Yu H Y 2020 Small 16 2004371Google Scholar

    [65]

    Wang Z, Liu X, Zhou X, Yuan Y, Zhou K, Zhang D, Luo H, Sun J 2022 Adv. Mater. 34 2200032Google Scholar

    [66]

    Yan M, Zhu Q, Wang S, Ren Y, Feng G, Liu L, Peng H, He Y, Wang J, Zhou P 2021 Adv. Electron. Mater. 7 2001276Google Scholar

    [67]

    Luo Q, Cheng Y, Yang J G, Cao R R, Ma H L, Yang Y, Huang R, Wei W, Zheng Y H, Gong T C, Yu J, Xu X X, Yuan P, Li X Y, Tai L, Yu H R, Shang D S, Liu Q, Yu B, Ren Q W 2020 Nat. Commun. 11 1391Google Scholar

    [68]

    Oh S, Hwang H, Yoo I K 2019 APL Mater. 7 091109Google Scholar

    [69]

    Upadhyay N K, Jiang H, Wang Z R, Asapu S, Xia Q F, Joshua Yang J J 2019 Adv. Mater. Technol. 4 1800589Google Scholar

    [70]

    Kim M K, Lee J S 2019 Nano Lett. 19 2044Google Scholar

    [71]

    Oh S, Kim T, Kwak M, Song J, Woo J, Jeon S, Yoo I K, Hwang H 2017 IEEE Electron Device Lett. 38 732Google Scholar

    [72]

    Luo Z D, Zhang S, Liu Y, Zhang D, Gan X, Seidel J, Liu Y, Han G, Alexe M, Hao Y 2022 ACS Nano 16 3362Google Scholar

    [73]

    Long S B, Perniola L, Cagli C, Buckley J, Lian X J, Miranda E, Pan F, Liu M, Suñé J 2013 Sci. Rep. 3 2929Google Scholar

    [74]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732Google Scholar

    [75]

    Sharath S U, Vogel S, Molina-Luna L, Hildebrandt E, Wenger C, Kurian J, Duerrschnabel M, Niermann T, Niu G, Calka P 2017 Adv. Funct. Mater. 27 1700432Google Scholar

    [76]

    Jeong D S, Kim K M, Kim S, Choi B J, Hwang C S 2016 Adv. Electron. Mater. 2 1600090Google Scholar

    [77]

    Sun L, Hwang G, Choi W, Han G, Zhang Y, Jiang J, Zheng S, Watanabe K, Taniguchi T, Zhao M 2020 Nano Energy 69 104472Google Scholar

    [78]

    Guo J, Wang L, Liu Y, Zhao Z, Zhu E, Lin Z, Wang P, Jia C, Yang S, Lee S J 2020 Matter 2 965Google Scholar

    [79]

    Wang L, Wang Z, Zhao W, Hu B, Xie L, Yi M, Ling H, Zhang C, Chen Y, Lin J 2017 Adv. Electron. Mater. 3 1600244Google Scholar

    [80]

    Li Q, Tao Q, Chen Y, Kong L, Shu Z, Duan H, Liao L, Liu Y 2021 Int. J. Extreme Manuf. 3 045103Google Scholar

    [81]

    Liu Y, Huang Y, Duan X 2019 Nature 567 323Google Scholar

    [82]

    Jariwala D, Marks T J, Hersam M C 2017 Nat. Mater. 16 170Google Scholar

    [83]

    Zhao X, Ma J, Xiao X, Liu Q, Shao L, Chen D, Liu S, Niu J, Zhang X, Wang Y 2018 Adv. Mater. 30 1705193Google Scholar

    [84]

    Yoon J H, Zhang J, Ren X, Wang Z, Wu H, Li Z, Barnell M, Wu Q, Lauhon L J, Xia Q 2017 Adv. Funct. Mater. 27 1702010Google Scholar

    [85]

    Lenser C, Kuzmin A, Purans J, Kalinko A, Waser R, Dittmann R 2012 Appl. Phys. Lett. 111 076101Google Scholar

    [86]

    Li Z, Tian B, Xue K H, Wang B, Xu M, Lu H, Sun H, Miao X 2019 IEEE Electron Device Lett. 40 1068Google Scholar

    [87]

    Zhang W, Huang Z, Zhang W, Li Y 2014 Nano Res. 7 1731Google Scholar

    [88]

    Chen J, Guo R, Wang X, Zhu C, Cao G, You L, Duan R, Zhu C, Hadke S S, Cao X 2022 ACS Nano 16 221Google Scholar

    [89]

    Lee G H, Yu Y J, Lee C, Dean C, Shepard K L, Kim P, Hone J 2011 Appl. Phys. Lett. 99 243114Google Scholar

    [90]

    Cumings J, Zettl A 2004 Solid State Commun. 129 661Google Scholar

    [91]

    Wang S, He C, Tang J, Lu X, Shen C, Yu H, Du L, Li J, Yang R, Shi D 2019 Adv. Electron. Mater. 5 1800726Google Scholar

    [92]

    Bertolazzi S, Krasnozhon D, Kis A 2013 ACS Nano 7 3246Google Scholar

    [93]

    Choi M S, Lee G H, Yu Y J, Lee D Y, Lee S H, Kim P, Hone J, Yoo W J 2013 Nat. Commun. 4 1624Google Scholar

    [94]

    Li D, Wang X, Zhang Q, Zou L, Xu X, Zhang Z 2015 Adv. Funct. Mater. 25 7360Google Scholar

    [95]

    Wu L, Wang A, Shi J, Yan J, Zhou Z, Bian C, Ma J, Ma R, Liu H, Chen J 2021 Nat. Nanotechnol. 16 882Google Scholar

    [96]

    Lai H J, Zhou Y, Zhou H B, Zhang N, Ding X D, Liu P Y, Wang X M, Xie W G 2022 Adv. Mater. 34 2110278Google Scholar

    [97]

    Yoon J H, Kim K M, Song S J, Seok J Y, Yoon K J, Kwon D E, Park T H, Kwon Y J, Shao X, Hwang C S 2015 Adv. Mater. 27 3811Google Scholar

    [98]

    Yao Y, Li C, Huo Z L, Liu M, Zhu C X, Gu C Z, Duan X F, Wang Y G, Gu L, Yu R C 2013 Nat. Commun. 4 2764Google Scholar

    [99]

    Michalas L, Stathopoulos S, Khiat A, Prodromakis T 2018 Appl. Phys. Lett. 113 143503Google Scholar

    [100]

    Li Y, Zhong Y P, Xu L, Zhang J J, Xu X H, Sun H J, Miao X S 2013 Sci. Rep. 3 1619Google Scholar

    [101]

    Maehne H, Wylezich H, Hanzig F, Slesazeck S, Rafaja D, Mikolajick T 2014 Semicond. Sci. Technol. 29 104002Google Scholar

    [102]

    Kim H J, Zheng H, Park J S, Kim D H, Kang C J, Jang J T, Kim D H, Yoon T S 2017 Nanotechnology 28 285203Google Scholar

    [103]

    Seo S, Jo S H, Kim S, Shim J, Oh S, Kim J H, Heo K, Choi J W, Choi C, Oh S 2018 Nat. Commun. 9 1Google Scholar

    [104]

    Arnold A J, Razavieh A, Nasr J R, Schulman D S, Eichfeld C M, Das S 2017 ACS Nano 11 3110Google Scholar

    [105]

    He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y, Guo X 2018 Small 14 1800079Google Scholar

    [106]

    Pei Z, Chung A, Hwang H 2007 Appl. Phys. Lett. 90 223513Google Scholar

    [107]

    Kim E, Yim T, An S, Cho W J, Park K 2010 Appl. Phys. Lett. 97 222107Google Scholar

    [108]

    Lee J, Pak S, Lee Y W, Cho Y, Hong J, Giraud P, Shin H S, Morris S M, Sohn J I, Cha S, Kim J M 2017 Nat. Commun. 8 14734Google Scholar

    [109]

    Wen J, Tang W, Kang Z, Liao Q, Hong M, Du J, Zhang X, Yu H, Si H, Zhang Z 2021 Adv. Sci. 8 2101417Google Scholar

    [110]

    Britnell L, Gorbachev R, Jalil R, Belle B, Schedin F, Mishchenko A, Georgiou T, Katsnelson M, Eaves L, Morozov S 2012 Science 335 947Google Scholar

    [111]

    Massicotte M, Schmidt P, Vialla F, Schädler K G, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij K J, Koppens F H L 2015 Nat. Nanotechnol. 11 42Google Scholar

    [112]

    Vu Q A, Lee J H, Nguyen V L, Shin Y S, Lim S C, Lee K, Heo J, Park S, Kim K, Lee Y H 2017 Nano Lett. 17 453Google Scholar

    [113]

    Furchi M M, Höller F, Dobusch L, Polyushkin D K, Schuler S, Mueller T 2018 NPJ 2D Mater. Appl. 2 3Google Scholar

    [114]

    Tian H, Cao X, Xie Y, Yan X, Kostelec A, DiMarzio D, Chang C, Zhao L D, Wu W, Tice J 2017 ACS Nano 11 7156Google Scholar

    [115]

    Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q, Pan A 2014 Nat. Nanotechnol. 9 1024Google Scholar

    [116]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [117]

    Jin C, Kim J, Suh J, Shi Z, Chen B, Fan X, Kam M, Watanabe K, Taniguchi T, Tongay S 2017 Nat. Phys. 13 127Google Scholar

    [118]

    Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A 2017 Sci. Adv. 3 e1603113Google Scholar

    [119]

    Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C, Seifert G 2018 Nat. Phys. 14 801Google Scholar

    [120]

    Li D, Chen M, Sun Z, Yu P, Liu Z, Ajayan P M, Zhang Z 2017 Nat. Nanotechnol. 12 901Google Scholar

    [121]

    Li H H, Xiong X L, Hui F, Yang D L, Jiang J B, Feng W X, Han J F, Duan J X, Wang Z R, Sun L F 2022 Nanotechnology 33 465601Google Scholar

    [122]

    Sun L F, Zhang Y S, Han G, Hwang G, Jiang J B, Joo B, Watanabe K, Taniguchi T, Kim Y M, Yu W J, Kong B S, Zhao R, Yang H 2019 Nat. Commun. 10 3161Google Scholar

    [123]

    Cai Z, Cao M, Jin Z, Yi K, Chen X, Wei D 2018 NPJ 2 D Mater. Appl. 2 21Google Scholar

    [124]

    Tran M D, Kim J H, Kim H, Doan M H, Duong D L, Lee Y H 2018 ACS Appl. Mater. Interfaces 10 10580Google Scholar

    [125]

    Pi L, Wang P, Liang S J, Luo P, Wang H, Li D, Li Z, Chen P, Zhou X, Miao F 2022 Nat. Electron. 5 248Google Scholar

    [126]

    Gbadamasi S, Mohiuddin M, Krishnamurthi V, Verma R, Khan M W, Pathak S, Kalantar-Zadeh K, Mahmood N 2021 Chem. Soc. Rev. 50 4684Google Scholar

    [127]

    Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H 2015 Science 349 524Google Scholar

    [128]

    Huang C, Wu S, Sanchez A M, Peters J J, Beanland R, Ross J S, Rivera P, Yao W, Cobden D H, Xu X 2014 Nat. Mater. 13 1096Google Scholar

    [129]

    He H K, Yang R, Huang H M, Yang F F, Wu Y Z, Shaibo J, Guo X 2020 Nanoscale 12 380Google Scholar

    [130]

    Wang M, Cai S, Pan C, Wang C, Lian X, Zhuo Y, Xu K, Cao T, Pan X, Wang B 2018 Nat. Electron. 1 130Google Scholar

    [131]

    Chen C, Song C, Yang J, Zeng F, Pan F 2012 Appl. Phys. Lett. 100 253509Google Scholar

    [132]

    Pickett M D, Medeiros-Ribeiro G, Williams R S 2013 Nat. Mater. 12 114Google Scholar

    [133]

    Hodgkin A L, Huxley A F 1952 Philos. Trans. R. Soc. London, Ser. B 140 177Google Scholar

    [134]

    Izhikevich E M 2003 IEEE Trans. Neural Networks 14 1569Google Scholar

    [135]

    Fourcaud-Trocmé N, Hansel D, Van Vreeswijk C, Brunel N 2003 J. Neurosci. 23 11628Google Scholar

    [136]

    Brette R, Gerstner W 2005 J. Neurophysiol. 94 3637Google Scholar

    [137]

    Jolivet R, Gerstner W 2003 Joint International Conference ICANN/ICONIP Istanbul, Turkey, June 26–29, 2003 p846

    [138]

    Deng L, Wu Y, Hu X, Liang L, Ding Y, Li G, Zhao G, Li P, Xie Y 2020 Neural Networks 121 294Google Scholar

    [139]

    Hao S, Ji X, Zhong S, Pang K Y, Lim K G, Chong T C, Zhao R 2020 Adv. Electron. Mater. 6 1901335Google Scholar

    [140]

    Dev D, Krishnaprasad A, Shawkat M S, He Z, Das S, Fan D, Chung H S, Jung Y, Roy T 2020 IEEE Electron Device Lett. 41 936Google Scholar

    [141]

    Beck M E, Shylendra A, Sangwan V K, Guo S, Rojas W A G, Yoo H, Bergeron H, Su K, Trivedi A R, Hersam M C 2020 Nat. Commun. 11 1565Google Scholar

    [142]

    Wang Z, Joshi S, Savel’ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z 2017 Nat. Mater. 16 101Google Scholar

    [143]

    Zhao H, Dong Z, Tian H, DiMarzi D, Han M G, Zhang L, Yan X, Liu F, Shen L, Han S J 2017 Adv. Mater. 29 1703232Google Scholar

    [144]

    Budiman F, Hernowo D G O, Pandey R R, Tanaka H 2018 Jpn. J. Appl. Phys. 57 03EA06Google Scholar

    [145]

    Ding G, Yang B, Chen R S, Mo W A, Zhou K, Liu Y, Shang G, Zhai Y, Han S T, Zhou Y 2021 Small 17 2103175Google Scholar

    [146]

    Zhu L Q, Wan C J, Guo L Q, Shi Y, Wan Q 2014 Nat. Commun. 5 3158Google Scholar

    [147]

    Van De Burgt Y, Lubberman E, Fuller E J, Keene S T, Faria G C, Agarwal S, Marinella M J, Alec Talin A, Salleo A 2017 Nat. Mater. 16 414Google Scholar

    [148]

    Sangwan V K, Jariwala D, Kim I S, Chen K-S, Marks T J, Lauhon L J, Hersam M C 2015 Nat. Nanotechnol. 10 403Google Scholar

    [149]

    Zhu J, Yang Y, Jia R, Liang Z, Zhu W, Rehman Z U, Bao L, Zhang X, Cai Y, Song L 2018 Adv. Mater. 30 1800195Google Scholar

    [150]

    Burr G W, Shelby R M, Sidler S, Di Nolfo C, Jang J, Boybat I, Shenoy R S, Narayanan P, Virwani K, Giacometti E U 2015 IEEE Trans. Electron Devices 62 3498Google Scholar

    [151]

    Wang S Y, Liu L, Gan L R, Chen H W, Hou X, Ding Y, Ma S L, Zhang D W, Zhou P 2021 Nat. Commun. 12 53Google Scholar

    [152]

    Jiang J, Guo J, Wan X, Yang Y, Xie H, Niu D, Yang J, He J, Gao Y, Wan Q 2017 Small 13 1700933Google Scholar

    [153]

    Bao L, Zhu J, Yu Z, Jia R, Cai Q, Wang Z, Xu L, Wu Y, Yang Y, Cai Y 2019 ACS Appl. Mater. Interfaces 11 41482Google Scholar

    [154]

    Gao J, Lian X, Chen Z X, Shi S, Li E L, Wang Y A, Jin T Y, Chen H P, Liu L, Chen J S, Zhu Y, Chen W 2022 Adv. Funct. Mater. 32 2110415Google Scholar

    [155]

    Caporale N, Dan Y 2008 Annu. Rev. Neurosci. 31 25Google Scholar

    [156]

    Sun L, Wang W, Yang H 2020 Adv. Intell. Syst. 2 1900167Google Scholar

    [157]

    Li Y, Zhong Y P, Zhang J J, Xu L, Wang Q, Sun H J, Tong H, Cheng X M, Miao X S 2014 Sci. Rep. 4 4906Google Scholar

    [158]

    Majumdar S, Tan H, Pande I, Van Dijken S 2019 APL Mater. 7 091114Google Scholar

    [159]

    Zappacosta S, Mannella F, Mirolli M, Baldassarre G 2018 PLoS Comput. Biol. 14 e1006227Google Scholar

    [160]

    Lee G, Baek J H, Ren F, Pearton S J, Lee G H, Kim J 2021 Small 17 2100640Google Scholar

    [161]

    Chen L, Wang L, Peng Y, Feng X, Sarkar S, Li S, Li B, Liu L, Han K, Gong X 2020 Adv. Electron. Mater. 6 2000057Google Scholar

    [162]

    Tang J, Yuan F, Shen X, Wang Z, Rao M, He Y, Sun Y, Li X, Zhang W, Li Y 2019 Adv. Mater. 31 1902761Google Scholar

    [163]

    Rachmuth G, Shouval H Z, Bear M F, Poon C S 2011 Proc. Natl. Acad. Sci. U.S.A. 108 E1266Google Scholar

    [164]

    Wang X, Wang B, Zhang Q, Sun Y, Wang E, Luo H, Wu Y, Gu L, Li H, Liu K 2021 Adv. Mater. 33 2102435Google Scholar

    [165]

    Liu Y, Li E, Wang X, Chen Q, Zhou Y, Hu Y, Chen G, Chen H, Guo T 2020 Nano Energy 78 105403Google Scholar

    [166]

    Feng X, Li Y, Wang L, Chen S, Yu Z G, Tan W C, Macadam N, Hu G, Huang L, Chen L 2019 Adv. Electron. Mater. 5 1900740Google Scholar

    [167]

    Seo S, Kang B S, Lee J J, Ryu H J, Kim S, Kim H, Oh S, Shim J, Heo K, Oh S, Park J H 2020 Nat. Commun. 11 3936Google Scholar

    [168]

    Yan X, Zhao J, Liu S, Zhou Z, Liu Q, Chen J, Liu X Y 2018 Adv. Funct. Mater. 28 1705320Google Scholar

    [169]

    Ryu J H, Kim B, Hussain F, Ismail M, Mahata C, Oh T, Imran M, Min K K, Kim T H, Yang B D 2020 IEEE Access 8 130678Google Scholar

    [170]

    Sun J, Oh S, Choi Y, Seo S, Oh M J, Lee M, Lee W B, Yoo P J, Cho J H, Park J H 2018 Adv. Funct. Mater. 28 1804397Google Scholar

    [171]

    Jin C, Liu W, Huang Y, Xu Y, Nie Y, Zhang G, He P, Sun J, Yang J 2022 Appl. Phys. Lett. 120 233701Google Scholar

    [172]

    Jin C, Liu W, Xu Y, Huang Y, Nie Y, Shi X, Zhang G, He P, Zhang J, Cao H 2022 Nano Lett. 22 3372Google Scholar

    [173]

    Kwon S M, Cho S W, Kim M, Heo J S, Kim Y H, Park S K 2019 Adv. Mater. 31 1906433Google Scholar

    [174]

    Qiu W, Huang Y, Kong L A, Chen Y, Liu W, Wang Z, Sun J, Wan Q, Cho J H, Yang J 2020 Adv. Funct. Mater. 30 2002325Google Scholar

    [175]

    Wang J, Chen Y, Kong L A, Fu Y, Gao Y, Sun J 2018 Appl. Phys. Lett. 113 151101Google Scholar

    [176]

    Chen Y, Qiu W, Wang X, Liu W, Wang J, Dai G, Yuan Y, Gao Y, Sun J 2019 Nano Energy 62 393Google Scholar

    [177]

    Fang L, Dai S, Zhao Y, Liu D, Huang J 2020 Adv. Electron. Mater. 6 1901217Google Scholar

    [178]

    Lee S H, Park H L, Kim M H, Kim M H, Park B G, Lee S D 2020 ACS Appl. Mater. Interfaces 12 51719Google Scholar

    [179]

    Jung K H, Yeon C, Yang J, Cheon Y J, Lim J W, Yun S J 2021 ACS Appl. Mater. Interfaces 13 8919Google Scholar

    [180]

    Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, Wang L, Ran Y, Guo Y, Hu W 2018 Adv. Mater. 30 1803961Google Scholar

    [181]

    Qian C, Sun J, Kong L A, Gou G, Yang J, He J, Gao Y, Wan Q 2016 ACS Appl. Mater. Interfaces 8 26169Google Scholar

    [182]

    Guo R, Zhou Y, Wu L, Wang Z, Lim Z, Yan X, Lin W, Wang H, Yoong H Y, Chen S 2018 ACS Appl. Mater. Interfaces 10 12862Google Scholar

    [183]

    Yoon C, Lee J H, Lee S, Jeon J H, Jang J T, Kim D H, Kim Y H, Park B H 2017 Nano Lett. 17 1949Google Scholar

    [184]

    Boyn S, Grollier J, Lecerf G, Xu B, Locatelli N, Fusil S, Girod S, Carrétéro C, Garcia K, Xavier S, Tomas J, Bellaiche L, Bibes M, Barthelemy A, Saighi S, Garcia V 2017 Nat. Commun. 8 14736Google Scholar

    [185]

    Yang J M, Choi E S, Kim S Y, Kim J H, Park J H, Park N G 2019 Nanoscale 11 6453Google Scholar

    [186]

    Cao G, Meng P, Chen J, Liu H, Bian R, Zhu C, Liu F, Liu Z 2021 Adv. Funct. Mater. 31 2005443Google Scholar

    [187]

    Ji X, Zhao X, Tan M C, Zhao R 2020 Adv. Intell. Syst. 2 1900118Google Scholar

    [188]

    Liu S, Wang Y, Fardad M, Varshney P K 2018 IEEE Circuits Syst. Mag. 18 29Google Scholar

    [189]

    Yoon J H, Wang Z R, Kim K M, Wu H Q, Ravichandran V, Xia Q F, Hwang C S, Yang J J 2018 Nat. Commun. 9 417Google Scholar

    [190]

    Yu S, Wu Y, Jeyasingh R, Kuzum D, Wong H S P 2011 IEEE Trans. Electron Devices 58 2729Google Scholar

    [191]

    Prezioso M, Merrikh-Bayat F, Hoskins B, Adam G C, Likharev K K, Strukov D B 2015 Nature 521 61Google Scholar

    [192]

    Wang C, Liang S J, Wang C Y, Yang Z Z, Ge Y, Pan C, Shen X, Wei W, Zhao Y, Zhang Z 2021 Nat. Nanotechnol. 16 1079Google Scholar

    [193]

    Wang C Y, Liang S J, Wang S, Wang P, Li Z A, Wang Z, Gao A, Pan C, Liu C, Liu J 2020 Sci. Adv. 6 eaba6173Google Scholar

    [194]

    Zhou F, Zhou Z, Chen J, Choy T H, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H S P 2019 Nat. Nanotechnol. 14 776Google Scholar

    [195]

    Sun L, Wang Z, Jiang J, Kim Y, Joo B, Zheng S, Lee S, Yu W J, Kong B S, Yang H 2021 Sci. Adv. 7 eabg1455Google Scholar

    [196]

    Du J, Xie D, Zhang Q, Zhong H, Meng F, Fu X, Sun Q, Ni H, Li T, Guo E J 2021 Nano Energy 89 106439Google Scholar

    [197]

    Admoni H, Scassellati B 2017 J. Hum. Robot Interact. 6 25Google Scholar

    [198]

    Yang G Z, Bellingham J, Dupont P E, Fischer P, Floridi L, Full R, Jacobstein N, Kumar V, McNutt M, Merrifield R, Nelson B J 2018 The Grand Challenges of Science Robotics. Sci. Robot. 3 eaar7650Google Scholar

    [199]

    Agmon-Snir H, Carr C E, Rinzel J 1998 Nature 393 268Google Scholar

    [200]

    Dabdoub A, Fritzsch B 2016 Audit. Neur. Their Net. 52 1Google Scholar

    [201]

    Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F 2014 Nature 514 470Google Scholar

    [202]

    Chen Y, Gao G, Zhao J, Zhang H, Yu J, Yang X, Zhang Q, Zhang W, Xu S, Sun J 2019 Adv. Funct. Mater. 29 1900959Google Scholar

    [203]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [204]

    任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇 2021 70 078701Google Scholar

    Ren K, Zhang K J, Qin X Z, Ren H X, Zhu S H, Yang F, Sun B, Zhao Y, Zhang Y 2021 Acta Phys. Sin 70 078701Google Scholar

    [205]

    任宽, 张握瑜, 王菲, 郭泽钰, 尚大山 2022 71 140701Google Scholar

    Ren K, Zhang W Y, Wang F, Guo Z Y, Shang D S 2022 Acta Phys. Sin 71 140701Google Scholar

    [206]

    Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K, Gorbachev R 2012 Nat. Mater. 11 764Google Scholar

    [207]

    Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C, McDonnell S, Colombo L, Vogel E, Ruoff R, Wallace R 2011 Appl. Phys. Lett. 99 122108Google Scholar

    [208]

    Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y 2011 Nano Lett. 11 767Google Scholar

    [209]

    Goossens A, Calado V, Barreiro A, Watanabe K, Taniguchi T, Vandersypen L 2012 Appl. Phys. Lett. 100 073110Google Scholar

    [210]

    Fan S, Vu Q A, Tran M D, Adhikari S, Lee Y H 2020 2 D Mater. 7 022005Google Scholar

    [211]

    Salahuddin S, Ni K, Datta S 2018 Nat. Electron. 1 442Google Scholar

    [212]

    Cai Z, Liu B, Zou X, Cheng H M 2018 Chem. Rev. 118 6091Google Scholar

    [213]

    Jang J, Son M, Chung S, Kim K, Cho C, Lee B H, Ham M H 2015 Sci. Rep. 5 17955Google Scholar

    [214]

    Sun L, Yuan G, Gao L, Yang J, Chhowalla M, Gharahcheshmeh M H, Gleason K K, Choi Y S, Hong B H, Liu Z 2021 Nat. Rev. Methods Primers 1 5Google Scholar

    [215]

    Das S, Sebastian A, Pop E, McClellan C J, Franklin A D, Grasser T, Knobloch T, Illarionov Y, Penumatcha A V, Appenzeller J 2021 Nat. Electron. 4 786Google Scholar

    [216]

    Wang Y, Liu S, Li Q, Quhe R, Yang C, Guo Y, Zhang X, Pan Y, Li J, Zhang H 2021 Rep. Prog. Phys. 84 056501Google Scholar

    [217]

    Bernstein K, Cavin R K, Porod W, Seabaugh A, Welser J 2010 Proc. IEEE 98 2169Google Scholar

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件.  , 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 王璇, 杜健嵘, 李志军, 马铭磷, 李春来. 串扰忆阻突触异质离散神经网络的共存放电与同步行为.  , 2024, 73(11): 110503. doi: 10.7498/aps.73.20231972
    [3] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现.  , 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [4] 王世场, 卢振洲, 梁燕, 王光义. N型局部有源忆阻器的神经形态行为.  , 2022, 71(5): 050502. doi: 10.7498/aps.71.20212017
    [5] 罗实, 魏大鹏, 魏大程. 二维材料在生物传感器中的应用.  , 2021, 70(6): 064701. doi: 10.7498/aps.70.20201613
    [6] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器.  , 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [7] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略.  , 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [8] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器.  , 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [9] 徐依全, 王聪. 基于二维材料的全光器件.  , 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [10] 王聪, 刘杰, 张晗. 基于二维纳米材料的超快脉冲激光器.  , 2019, 68(18): 188101. doi: 10.7498/aps.68.20190751
    [11] 院琳, 杨雪松, 王秉中. 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测.  , 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
    [12] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件.  , 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [13] 彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜. 基于人工神经网络在线学习方法优化磁屏蔽特性参数.  , 2019, 68(13): 130701. doi: 10.7498/aps.68.20190234
    [14] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用.  , 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [15] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现.  , 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [16] 吴全潭, 时拓, 赵晓龙, 张续猛, 伍法才, 曹荣荣, 龙世兵, 吕杭炳, 刘琦, 刘明. 基于六角氮化硼二维薄膜的忆阻器.  , 2017, 66(21): 217304. doi: 10.7498/aps.66.217304
    [17] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现.  , 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [18] 杨芳艳, 冷家丽, 李清都. 基于Chua电路的四维超混沌忆阻电路.  , 2014, 63(8): 080502. doi: 10.7498/aps.63.080502
    [19] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用.  , 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [20] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路.  , 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
计量
  • 文章访问数:  13066
  • PDF下载量:  732
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-16
  • 修回日期:  2022-08-13
  • 上网日期:  2022-10-26
  • 刊出日期:  2022-11-05

/

返回文章
返回
Baidu
map