-
Inspired by the working mechanism of human brain, the artificial neural network attracts great interest for its capability of parallel processing, which is favored by big data task. However, the electronic synapse based on CMOS neural network needs at least ten transistors to realize one biological synaptic function. So, CMOS-based neural network exhibits obvious weakness in speed, power consumption, circuit area and resource utilization and so on, compared with biological synapses. Therefore, how to build neuromorphic circuits and realize biological functions by constructing electronic synapses with low power consumption and high integration density have become the key points for human to realize brain-like computing system. Memristors, as the fourth basic component, is a two-terminal nonlinear device possessing nonlinear conductance that can be tuned continuously. For that special characteristic, it is very similar to biological synapse whose connection strength can be adjusted continuously. In this article, first of all, we study the electrical characteristic of the Cu/MXene/SiO2/W memristor. When applying a positive DC sweeping voltage to the Cu electrode, the Cu electrode is oxidized, generating Cu2+. The generated Cu2+ in function layer tends tomove towards the bottom electrode under the action of electric field. Near the bottom electrode the Cu2+ moving from top electrode are reduced, generating a conductive Cu atom. With Cu atoms accumulating and extending from bottom electrode to top electrode, the memristor is gradually converted from the initial high resistance state (HRS) into the low resistance state (LRS). Secondly, combining with HP model of memristor, we utilize Verilog A language to simulate memristor in the experiment we conducted. Subsequently, we successfully construct the artificial synaptic unit and design the weight differential circuit with self-feedback branch. In the above circuit, we successfully implementa classical " Pavlov's dog” experiment. By applying the sinusoidal signal and pulse signal to the synaptic unit for testing and training it, respectively, the circuit realizes the convention between the conditions that unconditioned stimulus producing unconditioned response to conditioned stimulus producing conditions response. This work takes memristor as a center, through modelling the electrical characteristic of Cu/MXene/ SiO2/W device, we construct a neuromorphic circuit with weight differential branch andself-feedback branch, successfully simulate the classical learning behavior of biological synapses, and realizes the whole process of biologically conditioned reflex, which is illustrated in detail in the experiment on " Pavlov′s dog”. The results will provide effective guidance forconstructing a large scale and high density neuromorphic circuitbased on memristor, thus promoting the realization of brain-like computation in the future. -
Keywords:
- memristor /
- artificial synapse /
- conditioned reflex /
- neuromorphiccircuits
[1] Backus J 1978 Commun. ACM 21 513
[2] Wang J, Zhuge F 2019 Adv. Mater. Technol. 4 1800544Google Scholar
[3] Murre J M, Sturdy D P 1995 Biol. Cybern. 73 529Google Scholar
[4] Braitenberg V, Schuz A A 1991 J. Anat. 179 203
[5] Sporns O, Tononi G, Kötter R 2005 PLoS Comput. Biol. 1 42Google Scholar
[6] Hebb D O 1949 Am. J. Psychol. 63 633
[7] Wixted J T, Ebbesen E B 1991 Psychol. Sci. 2 409Google Scholar
[8] Douglas R, Mahowald M, Mead C 1995 Annu. Rev. Neurosci. 18 255Google Scholar
[9] Jürgen S 2015 Neural Networks 61 85Google Scholar
[10] Dean J, Corrado G S, Monga R, Chen K, Devin M, Le Q V, Mao M Z, Ranzato M A, Senior A, Tucker P, Yang K, Ng A Y 2012 Advances in Neural Information Processing Systems Harrahs and Harveys, Lake Tahoe, December 3–8, 2012 p1232
[11] Rachmuth G, Poon C S 2008 Hfsp Journal 2 156Google Scholar
[12] Liu Y H, Zhu L Q, Feng P, Shi Y, Wan Q 2015 Adv. Mater. 27 5599Google Scholar
[13] Lont J B, Guggenbuhl W 1992 IEEE Trans. Neural Networks 3 457Google Scholar
[14] Dmitri B S, Gregory S S, Duncan R S, Williams R S 2008 Nature 453 80Google Scholar
[15] Jeong H, Shi L P 2019 J. Phys. D: Appl. Phys. 52 023003Google Scholar
[16] Waser R, Aono M 2007 Nat. Mater. 6 833Google Scholar
[17] Hirose Y, Hirose H 1976 J. Appl. Phys. 47 2767Google Scholar
[18] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 67 157302Google Scholar
Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar
[19] Hui Q H, Zhao L, Wang X P 2019 Neurocomputing 330 11Google Scholar
[20] Daniele I 2016 Semicond. Sci. Technol. 31 063002Google Scholar
[21] Wu L, Liu H X, Li J B, Wang S L, Wang X 2019 Nanoscale Res. Lett. 14 184Google Scholar
[22] Gurme S T, Dongale T D, Surwase S N, Kumbhar S D, More G M, Pati V L, Patil P S, Kamat R K, Jadhav J P 2018 Phys. Status Solidi. 215 1800550Google Scholar
[23] Ling Z, Ren C E, Zhao M Q, Yang J, Giammarco J M, Qiu J, Barsoum M W Gogotsi Y 2014 PNAS 111 16676Google Scholar
[24] Lei J C, Zhang X, Zhou Z, Lei J C, Zhang X, Zhou Z 2015 Front. Phys. Beijing 10 276Google Scholar
[25] Yan X B, Wang K Y, Zhao J H, Zhou Z Y, Wang H, Wang J J, Zhang L, Li X Y, Xiao Z A, Zhao Q L, Pei Y F, Wang G, Qin C Y, Li H, Lou J Z, Liu Q, Zhou P 2019 Small 15 1900107Google Scholar
[26] Li D, Wu B, Zhu X, Wang J, Ryu B, Lu W D, Lu W, Liang X 2018 ACS Nano 12 9240Google Scholar
[27] Zhou L, Yang S W, Ding G Q, Yang J Q, Ren Y, Zhang S R, Mao J Y, Yang Y C, Zhou Y, Han S T 2019 Nano Energy 58 293Google Scholar
[28] Radtke P K, Schimansky G L 2016 AIP Adv. 6 055119Google Scholar
[29] Dickinson A 1981 Br. Med. Bull. 37 165Google Scholar
[30] Zhang M C, Wang Y Q, Gao F, Wang Y, Shen X Y, He N, Zhu J L, Chen Y H, Wan X, Lian X J, Hu E T, Xu J G, Tong Y 2019 Ceram. Int. 45 19467Google Scholar
[31] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建 2019 68 098501Google Scholar
Chen Y H, Xu W, Wang Y Q, Wan X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu E T, Guo Y F, Xu J G, Tong Y, Xiao J 2019 Acta Phys. Sin. 68 098501Google Scholar
[32] McAndrew C C, Coram G J, Gullapalli K K, Jones J B, Nagel L W, Roy A S, Roychowdhury J, Scholten A J, Smit G D J, Wang X, Yoshitomi S 2017 IEEE J. Electron Dev. 3 383
[33] Messaris I, Serb A, Stathopoulos S, Khiat A, Nikolaidis S, Prodromakis T 2018 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37 3151Google Scholar
[34] McDonald N R, Pino R E, Rozwood P J, Wysocki B T 2010 IEEE International Joint Conference on Neural Networks Barcelona, Spain, July 18–23, 2010 p1
[35] Dongale T D, Patil P J, Desai N K, Chougule P P, Kumbhar S M, Waifalkar P P, Patil P B, Vhatkar R S, Takale M V, Gaikwad P K, Kamat R K 2016 Nano Convergence 3 16Google Scholar
[36] Hu X, Feng G, Duan S, Liu L 2016 IEEE T. Neur. Net. Lear. 28 1889
[37] Zhao J, Zhou Z, Zhang Y, Wang J, Zhang L, Li X, Zhao M, Wang H, Pei Y, Zhao Q, Xiao Z, Wang K, Qin C, Wang G, Li H, Ding B, Yan F, Wang K, Ren D, Liu B, Yan X 2019 J. Mater. Chem. C 7 1298Google Scholar
[38] Pan Y, Wan T, Du H, Qu B, Wang D, Ha T J, Chu D 2018 J. Alloys Compd. 757 496Google Scholar
[39] Hong X L, Loy J J, Dananjaya P A, Tan F, Ng C M, Lew W S 2018 J. Mater. Sci. 53 8720Google Scholar
[40] Wan X, Liang D K, Gao Fei, Lian X J, Tong Y 2018 Appl. Phys. Express 11 114601Google Scholar
[41] Yakopcic C, Tarek T M 2018 International Joint Conference on Neural Networks Rio de Janeiro, Brazil, July 8–13, 2018 p8489252
-
图 1 (a) Cu/MXene/SiO2/W忆阻器结构及电学测试示意图; (b)二维材料MXene的扫描电镜图; (b) 金相显微镜下忆阻器表面结构; (d)正向偏压下器件工作机理示意图; (e)受到刺激信号, 突触前膜、突触后膜之间神经递质迁移示意图
Fig. 1. (a) The device structure and measurement of Cu/MXene/SiO2/W memristor; (b) surface structure of memristor under metallographic microscope; (c) the scanning electron microscope result of two-dimensional material MXene; (d) the physical mechanism of the Cu/MXene/SiO2/W memristor under positive voltagestimulus; (e) the neurotransmitter transfer between pre- and postsynaptic membrane after stimulus.
图 4 (a)仿真过程施加的信号以及各自对应的结果图; (b)对电路中忆阻器模型进行直流电压扫描, 流经忆阻器的电流随仿真时间的变化; (c)训练过程中, 流经忆阻器Ma的电流随时间的变化
Fig. 4. (a) The signals inputted into the circuit and corresponding output waveform, respectively; (b) the change of current flowing through the memristor against timeduring DC voltage sweeping; (c) the change of current through the memristor Ma during training process.
表 1 模型主要参数
Table 1. Key modeling parameters.
开启电阻 截止电阻 有源区长度 离子迁移率 窗函数参数 ${R_{{\rm{on}}}}/\Omega $ ${R_{{\rm{off}}}}/\Omega $ D/m uv x0 y0 p m 3.7 × 102 1.9 × 104 3.0 × 10–8 3.0 × 10–13 0.3 0.7 30 100 -
[1] Backus J 1978 Commun. ACM 21 513
[2] Wang J, Zhuge F 2019 Adv. Mater. Technol. 4 1800544Google Scholar
[3] Murre J M, Sturdy D P 1995 Biol. Cybern. 73 529Google Scholar
[4] Braitenberg V, Schuz A A 1991 J. Anat. 179 203
[5] Sporns O, Tononi G, Kötter R 2005 PLoS Comput. Biol. 1 42Google Scholar
[6] Hebb D O 1949 Am. J. Psychol. 63 633
[7] Wixted J T, Ebbesen E B 1991 Psychol. Sci. 2 409Google Scholar
[8] Douglas R, Mahowald M, Mead C 1995 Annu. Rev. Neurosci. 18 255Google Scholar
[9] Jürgen S 2015 Neural Networks 61 85Google Scholar
[10] Dean J, Corrado G S, Monga R, Chen K, Devin M, Le Q V, Mao M Z, Ranzato M A, Senior A, Tucker P, Yang K, Ng A Y 2012 Advances in Neural Information Processing Systems Harrahs and Harveys, Lake Tahoe, December 3–8, 2012 p1232
[11] Rachmuth G, Poon C S 2008 Hfsp Journal 2 156Google Scholar
[12] Liu Y H, Zhu L Q, Feng P, Shi Y, Wan Q 2015 Adv. Mater. 27 5599Google Scholar
[13] Lont J B, Guggenbuhl W 1992 IEEE Trans. Neural Networks 3 457Google Scholar
[14] Dmitri B S, Gregory S S, Duncan R S, Williams R S 2008 Nature 453 80Google Scholar
[15] Jeong H, Shi L P 2019 J. Phys. D: Appl. Phys. 52 023003Google Scholar
[16] Waser R, Aono M 2007 Nat. Mater. 6 833Google Scholar
[17] Hirose Y, Hirose H 1976 J. Appl. Phys. 47 2767Google Scholar
[18] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 67 157302Google Scholar
Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar
[19] Hui Q H, Zhao L, Wang X P 2019 Neurocomputing 330 11Google Scholar
[20] Daniele I 2016 Semicond. Sci. Technol. 31 063002Google Scholar
[21] Wu L, Liu H X, Li J B, Wang S L, Wang X 2019 Nanoscale Res. Lett. 14 184Google Scholar
[22] Gurme S T, Dongale T D, Surwase S N, Kumbhar S D, More G M, Pati V L, Patil P S, Kamat R K, Jadhav J P 2018 Phys. Status Solidi. 215 1800550Google Scholar
[23] Ling Z, Ren C E, Zhao M Q, Yang J, Giammarco J M, Qiu J, Barsoum M W Gogotsi Y 2014 PNAS 111 16676Google Scholar
[24] Lei J C, Zhang X, Zhou Z, Lei J C, Zhang X, Zhou Z 2015 Front. Phys. Beijing 10 276Google Scholar
[25] Yan X B, Wang K Y, Zhao J H, Zhou Z Y, Wang H, Wang J J, Zhang L, Li X Y, Xiao Z A, Zhao Q L, Pei Y F, Wang G, Qin C Y, Li H, Lou J Z, Liu Q, Zhou P 2019 Small 15 1900107Google Scholar
[26] Li D, Wu B, Zhu X, Wang J, Ryu B, Lu W D, Lu W, Liang X 2018 ACS Nano 12 9240Google Scholar
[27] Zhou L, Yang S W, Ding G Q, Yang J Q, Ren Y, Zhang S R, Mao J Y, Yang Y C, Zhou Y, Han S T 2019 Nano Energy 58 293Google Scholar
[28] Radtke P K, Schimansky G L 2016 AIP Adv. 6 055119Google Scholar
[29] Dickinson A 1981 Br. Med. Bull. 37 165Google Scholar
[30] Zhang M C, Wang Y Q, Gao F, Wang Y, Shen X Y, He N, Zhu J L, Chen Y H, Wan X, Lian X J, Hu E T, Xu J G, Tong Y 2019 Ceram. Int. 45 19467Google Scholar
[31] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建 2019 68 098501Google Scholar
Chen Y H, Xu W, Wang Y Q, Wan X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu E T, Guo Y F, Xu J G, Tong Y, Xiao J 2019 Acta Phys. Sin. 68 098501Google Scholar
[32] McAndrew C C, Coram G J, Gullapalli K K, Jones J B, Nagel L W, Roy A S, Roychowdhury J, Scholten A J, Smit G D J, Wang X, Yoshitomi S 2017 IEEE J. Electron Dev. 3 383
[33] Messaris I, Serb A, Stathopoulos S, Khiat A, Nikolaidis S, Prodromakis T 2018 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37 3151Google Scholar
[34] McDonald N R, Pino R E, Rozwood P J, Wysocki B T 2010 IEEE International Joint Conference on Neural Networks Barcelona, Spain, July 18–23, 2010 p1
[35] Dongale T D, Patil P J, Desai N K, Chougule P P, Kumbhar S M, Waifalkar P P, Patil P B, Vhatkar R S, Takale M V, Gaikwad P K, Kamat R K 2016 Nano Convergence 3 16Google Scholar
[36] Hu X, Feng G, Duan S, Liu L 2016 IEEE T. Neur. Net. Lear. 28 1889
[37] Zhao J, Zhou Z, Zhang Y, Wang J, Zhang L, Li X, Zhao M, Wang H, Pei Y, Zhao Q, Xiao Z, Wang K, Qin C, Wang G, Li H, Ding B, Yan F, Wang K, Ren D, Liu B, Yan X 2019 J. Mater. Chem. C 7 1298Google Scholar
[38] Pan Y, Wan T, Du H, Qu B, Wang D, Ha T J, Chu D 2018 J. Alloys Compd. 757 496Google Scholar
[39] Hong X L, Loy J J, Dananjaya P A, Tan F, Ng C M, Lew W S 2018 J. Mater. Sci. 53 8720Google Scholar
[40] Wan X, Liang D K, Gao Fei, Lian X J, Tong Y 2018 Appl. Phys. Express 11 114601Google Scholar
[41] Yakopcic C, Tarek T M 2018 International Joint Conference on Neural Networks Rio de Janeiro, Brazil, July 8–13, 2018 p8489252
计量
- 文章访问数: 13147
- PDF下载量: 321
- 被引次数: 0