搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控

高洁 杭超

引用本文:
Citation:

里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控

高洁, 杭超

Deflection and manipulation of weak optical solitons by non-Hermitian electromagnetically induced gratings in Rydberg atoms

Gao Jie, Hang Chao
PDF
HTML
导出引用
  • 基于里德伯-电磁感应透明系统实现了具有宇称-时间对称的电磁感应诱导光栅, 并研究了系统中探测光场在到达光栅前形成孤子的过程以及经过光栅时引起的偏折现象. 发现由于里德伯-电磁感应透明系统具有很强的非线性光学效应, 因此只需要很少的输入探测光能量就能形成稳定的光孤子. 此外还发现, 通过改变电磁感应诱导光栅的增益/损耗系数、光栅周期、以及体系的克尔非线性非局域度都可以有效地改变探测光孤子的偏折程度和状态, 实现对弱光孤子偏折的主动操控. 本文的研究结果可为未来利用宇称-时间对称的电磁感应诱导光栅实现全光控制和光信息处理等相关应用提供一定的理论依据.
    Based on a Rydberg-electromagnetically-induced-transparency (Rydberg-EIT) system, an electromagnetically induced grating (EIG) with parity-time (${\cal{PT}}$) symmetry is realized. The formation of solitons before the probe laser field reaching the EIG as well as its deflection when passing through the EIG are both investigated. It is found that due to the enhanced nonlinear optical effect of the Rydberg-EIT system, stable optical soliton can be formed with a very weak input light energy. In addition, it is found that by changing the gain/absorption coefficient of EIG, the period of EIG, and the nonlocality degree of optical Kerr nonlinear of the system, the deflection degree of the optical soliton can be effectively changed and manipulated. The research results of this work can provide a theoretical basis for the future applications of ${\cal{PT}}$-symmetric EIG and may be useful in the fields of all-optical manipulation and optical information processing.
      通信作者: 杭超, chang@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974117)和国家自然科学基金重点项目(批准号: 2017YFA0304201)资助的课题
      Corresponding author: Hang Chao, chang@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974117) and the National Key Research and Development Program of China (Grant No. 2017YFA0304201)
    [1]

    Boettcher S, Bender C M 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [2]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [3]

    Makris K G, El-Ganainy R, Christodoulides D N, Musslimani Z H 2008 Phys. Rev. Lett. 100 103904Google Scholar

    [4]

    Feng L, El-Ganainy R, Ge L 2017 Nat. Photonics 11 752Google Scholar

    [5]

    Konotop V V, Shchesnovich V S, Zezyulin D A 2012 Phys. Lett. A 376 2750Google Scholar

    [6]

    Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y 2011 Science 333 729Google Scholar

    [7]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [8]

    Longhi S 2010 Phys. Rev. A 82 031801(RGoogle Scholar

    [9]

    Chong Y D, Ge L, Stone A D 2011 Phys. Rev. Lett. 106 093902Google Scholar

    [10]

    Sun Y, Tan W, Li H, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903Google Scholar

    [11]

    Feng L, Wong Z J, Ma R, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [12]

    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975Google Scholar

    [13]

    Jin L 2018 Phys. Rev. A 97 033840Google Scholar

    [14]

    Hodaei H, Hassan A U, Wittek S, et al. 2017 Nature 548 187Google Scholar

    [15]

    Chen W, Ozdemir Ș K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [16]

    Jin L 2018 Phys. Rev. A 97 012121Google Scholar

    [17]

    Xiao L, Zhan X, Bian Z H, et al. 2017 Nat. Phys. 13 1117Google Scholar

    [18]

    Naghiloo M, Abbasi M, Joglekar Y N 2019 Nat. Phys. 15 1232Google Scholar

    [19]

    Musslimani Z H, Makris K G, El-Ganainy R, Christodoulides D N 2008 Phys. Rev. Lett. 100 030402Google Scholar

    [20]

    Hu S M, Ma X, Lu D, Yang Z, Zheng Y, Hu W 2011 Phys. Rev. A 84 043818Google Scholar

    [21]

    Shi Z, Jiang X, Zhu X, Li H 2011 Phys. Rev. A 84 053855Google Scholar

    [22]

    He Y, Zhu X, Mihalache D, Liu J, Chen Z 2012 Phys. Rev. A 85 013831Google Scholar

    [23]

    Li C Y, Huang C M, Dong L W 2013 Chin. Phys. B 22 074209Google Scholar

    [24]

    Hu S M, Hu W 2013 Chin. Phys. B 22 074201Google Scholar

    [25]

    Hang C, Huang G 2015 Phys. Rev. A 91 043833Google Scholar

    [26]

    Yan Z, Wen Z, Hang C 2015 Phys. Rev. E 92 022913Google Scholar

    [27]

    Zhou K, Wei T, Sun H, He Y, Liu S 2015 Opt. Express 23 16903Google Scholar

    [28]

    Hang C, Huang G 2018 Phys. Rev. A 98 043840Google Scholar

    [29]

    Chen Y, Yan Z, Mihalache D 2020 Phys. Rev. E 102 012216Google Scholar

    [30]

    Gallagher T F 2008 Rydberg Atoms (England: Cambridge University Press) pp1–9

    [31]

    Mohapatra A K, Bason M G, Butscher B 2008 Nat. Phys. 4 89Google Scholar

    [32]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 82 2313Google Scholar

    [33]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [34]

    Sevincli S, Henkel N, Ates C, Pohl T 2011 Phys. Rev. Lett. 107 153001Google Scholar

    [35]

    Pritchard J D, Weatherill K J, Adams C S 2013 Annu. Rev. Cold At. Mol. 1 301

    [36]

    Firstenberg O, Adams C S, Hofferberth S 2016 J. Phys. B: At. Mol. Opt. Phys. 49 152003Google Scholar

    [37]

    Murray C, Pohl T 2016 Advances in Atomic, Molecular, and Optical Physics (New York: Academic Press) pp321–372

    [38]

    Zhu X Y, Xu Y L, Zou Y, Sun X C, He C, Lu M H, Liu X P, Chen Y F 2016 Appl. Phys. Lett. 109 111101Google Scholar

    [39]

    Liu Y M, Gao F, Fan C H, Wu J H 2017 Opt. Lett. 42 4283Google Scholar

    [40]

    Shui T, Yang W X, Liu S, Li L 2018 Phys. Rev. A 97 033819Google Scholar

    [41]

    Ma D, Yu D, Zhao X, Qian J 2019 Phys. Rev. A 99 033826Google Scholar

    [42]

    Hang C, Li W, Huang G 2019 Phys. Rev. A 100 043807Google Scholar

    [43]

    Agarwal G S, Vemuri G, Mossberg T W 1993 Phys. Rev. A 48 R4055(RGoogle Scholar

    [44]

    Bai Z, Huang G 2016 Opt. Express 24 4442Google Scholar

    [45]

    Bai Z, Li W, Huang G 2019 Optica 6 309Google Scholar

    [46]

    Hang C, Huang G, Konotop V V 2013 Phys. Rev. Lett. 110 083604Google Scholar

    [47]

    Hang C, Huang G 2017 Adv. Phys. X 2 737Google Scholar

    [48]

    Królikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys. Rev. E 64 016612Google Scholar

    [49]

    Lumer Y, Plotnik Y, Rechtsman M C, Segev M 2013 Phys. Rev. Lett. 111 263901Google Scholar

  • 图 1  里德伯-EIT系统的能级图、装置示意图、以及非线性响应函数的空间分布 (a) 里德伯-EIT系统的能级图. 能级$|1\rangle$, $|2\rangle$, 和$|3\rangle$构成经典的$\Lambda$型EIT, 其中探测场$E_{{\rm{p}}}$耦合能级跃迁$|1\rangle \leftrightarrow|2\rangle$, 控制场耦合能级跃迁$|2\rangle \leftrightarrow|3\rangle$, $\varDelta_{j}$为失谐量, $\varGamma_{jl}$为能级$|l\rangle$到能级$|j\rangle$的自发辐射衰减率. 里德伯能级$|4\rangle$通过辅助光场$E_{{\rm{a}}}$与能级$|3\rangle$远共振耦合. 引入非相干泵浦(泵浦率$\varGamma_{21}$)将原子从能级$|1\rangle$泵浦到能级$|2\rangle$. 里德伯原子之间的相互作用(即里德伯- 里德伯相互作用)由范德瓦耳斯相互作用势$V_{\rm{vdw}}$描述 ($V_{\rm{vdw}}$的表达式在文中给出). (b) 里德伯-EIT系统的装置示意图. (c) 非线性响应函数实部和虚部的空间分布, Re($W(\xi)$)(红色实线表示)和Im($W(\xi)$)(蓝色虚线表示); 横坐标为$\xi=x/w_0$. 图中所用的系统参数在正文中给出

    Fig. 1.  Level diagram and excitation scheme of the Rydberg-EIT, possible setting, and spatial distributions of the nonlinear response function. Energy levels $|1\rangle$, $|2\rangle$, and $|3\rangle$ constitute a $\Lambda$-type EIT configuration, where the probe laser field $E_{\rm{p}}$ couples the transition $|1\rangle \leftrightarrow|2\rangle$ and the control laser field $E_{\rm{c}}$ couples the transition $|2\rangle\leftrightarrow|3\rangle$. $\varDelta_j$ are detunings and $\varGamma_{jl}$ are the spontaneous-emission decay rate from $|l\rangle$ to $|j\rangle$. The $\Lambda$-type EIT is dressed by a high-lying Rydberg state $|4\rangle$, which is far-off-resonantly coupled to state $|3\rangle$ through an assistant laser field $E_{\rm{a}}$. An incoherent pumping (with the pumping rate $\varGamma_{21}$) is introduced to pump the atoms from $|l\rangle$ to $|2\rangle$. The interaction between two Rydberg atoms is described by the van der Waals potential $V_{\rm{vdw}}$ (given in the text). (b) Possible setting of the Rydberg-EIT system. (c) Spatial distributions of the real and imaginary parts of the nonlinear response function, Re$(W)$ (the red solid line) and Im$(W)$ (the blue dashed line), as functions of $\xi=x/w_0$

    图 2  EIG以及控制场和辅助场的空间分布 (a) EIG的实部和虚部在$x$方向上的分布, Re($V(\xi)$)(红色实线表示)和Im($V(\xi)$)(蓝色虚线表示); (b) 控制场和辅助场在$x$方向上的分布, $\varOmega_{{\rm{c}}}(\xi)/\varOmega_{{\rm{c}}0}$(红色实线表示)和$\varOmega_{a}(\xi)/\varOmega_{a0}$(蓝色虚线表示). 图中, 横坐标为$\xi=x/w_0$, 调制系数取值为$V_1=V_2=0.01$, 其他系统参数在文中给出

    Fig. 2.  Spatial distributions of the optical potential and the control and assistant fields: (a) Real and imaginary parts of the optical potential, Re$(V)$ (solid red line) and Im$(V)$ (blue dashed line), as functions of $\xi=x/w_0$; (b) half Rabi frequencies of the control and assistant fields, $\varOmega_{\rm{c}}$ (red solid line) and $\varOmega_{\rm{a}}$ (blue dashed line), as functions of $\xi=x/w_0$. In all panels, $V_1=V_2=0.01$. Other system parameters are given in the text

    图 3  改变输入探测场振幅时探测光的传播结果 (a) 输入探测场振幅$A=0.1$ (输入探测场能量$P_0=0.02$); (b) $A=1$ ($P_0= $$ 2$). 其他参数取为$V_{2}=0$, $K=1$, 以及$\sigma=0$ (对应于局域克尔非线性). 图(a)和图(b)中蓝色虚线和红色实线分别表示探测场的输入($z=0$)与输出($z=10 L_{\rm{diff}}=1.4$ cm)波形.与图(a)和图(b)对应的传播过程分别在图(a1)和图(b1)中显示, 图(a1)和图(b1)中的垂直白色虚线表示EIG所在的区域

    Fig. 3.  Propagation of probe laser field with different input amplitude: (a) $A=0.1$ ($P_0=0.02$); (b) $A=1$ ($P_0=2$). Other system parameters are chosen as $V_{2}=0$, $K=1$, and $\sigma=0$. Panel (a1) and panel (b1) show propagation results corresponding to panel (a) and panel (b), respectively. The vertical white dashed lines in panel (a1) and panel (b1) represent the EIG regions

    图 4  探测光孤子随EIG增益/吸收系数增大引起的偏折 (a) 增益/吸收系数$V_{2}=0.5$, 偏折角$\theta\approx\arctan 0.4$; (b) $V_{2}=1$, $\theta\approx\arctan 0.7$; (c) $V_{2}=1.5$, $\theta\approx\arctan 0.9$. 其他参数固定为$K=1$以及$\sigma=0$. 图(a)—(c)中蓝色虚线和红色实线分别表示探测场的输入($z=0$)与输出($z=10 L_{\rm{diff}}=1.4$ cm)波形; 与图(a)—(c)对应的传播过程分别在图(a1)—(c1)中显示, 图(a1)—(c1)中的垂直白色虚线表示EIG所在的区域

    Fig. 4.  Deflection of the probe soliton due to the increase of gain/loss coefficient of the EIG: (a) $V_{2}=0.5$, the deflection angle $\theta\approx\arctan 0.4$; (b) $V_{2}=1$, the deflection angle $\theta\approx\arctan 0.7$; (c) $V_{2}=1.5$, the deflection angle $\theta\approx\arctan 0.9$. Other system parameters are chosen as $K=1$ and $\sigma=0$. Panels (a1)–(c1) show propagation results corresponding to panel (a)–(c), respectively. The vertical white dashed lines in panels (a1)–(c1) represent the EIG regions

    图 5  改变EIG周期引起的探测光孤子的偏折变化 (a) EIG周期为$4\pi$($K=0.5$), 偏折角$\theta\approx\arctan 0.2$; (b) EIG周期为$\pi$($K\approx $$ 2$), $\theta\approx\arctan 1.3$; (c) EIG周期为$\pi/4$($K=8$), $\theta\approx0$. 其他参数固定为$V_{2}=1$以及$\sigma=0$. 图(a)—(c)中蓝色虚线和红色实线分别表示探测场的输入($z=0$)与输出($z=10 L_{\rm{diff}}=1.4$ cm)波形. 与图(a)—(c)对应的传播过程分别在图(a1)—(c1) 中显示, 图(a1)—(c1)中的垂直白色虚线表示EIG所在的区域

    Fig. 5.  Deflection of the probe soliton due to the change of the EIG period: (a) EIG period is $4\pi$($K=0.5$), the deflection angle $\theta\approx\arctan 0.2$; (b) EIG period is $\pi$($K=2$), the deflection angle $\theta\approx\arctan 1.3$; (c) EIG period is $\pi/4$($K=8$), the deflection angle $\theta\approx0$. Other system parameters are chosen as $V_{2}=1$ and $\sigma=0$. Panels (a1)–(c1) show propagation results corresponding to panels (a)–(c), respectively. The vertical white dashed lines in panels (a1)–(c1) represent the EIG regions

    图 6  克尔非线性非局域度发生改变时对孤子偏折带来的影响 (a) 非局域度$\sigma=1$(弱非局域情况), 偏折角$\theta\approx\arctan 0.7$; (b) $\sigma= $$ 10$(强非局域情况), $\theta$不变. 其他参数固定为$V_{2}=1$以及$K=1$. 图(a)和图(b)中蓝色虚线和红色实线分别表示探测场的输入($z=0$)与输出($z=10 L_{\rm{diff}}=1.4$ cm) 波形. 与图(a)和图(b)对应的传播过程分别在图(a1)和图(b1)中显示, 图(a1)和图(b1)中的垂直白色虚线表示EIG所在的区域

    Fig. 6.  Deflection of the probe soliton due to the change of nonlocality degree of the Kerr nonlinearity: (a) $\sigma=1$(weak nonlocality), the deflection angle $\theta\approx\arctan 0.7$; (b) $\sigma=10$(strong nonlocality), the deflection angle is the same. Other system parameters are chosen as $V_{2}=1$ and $K=0$. Panels (a1) and (b1) show propagation results corresponding to panels (a) and (b), respectively. The vertical white dashed lines in panels (a1) and (b1) represent the EIG regions

    图 7  孤子偏折角与EIG的增益/损耗系数以及周期的依赖关系 (a) 偏折角$\theta$与EIG的增益/损耗系数$V_2$的依赖关系, 其他参数固定为$K=1$以及$\sigma=0$; (b) $\theta$与EIG周期$2\pi/K$的依赖关系, 其他参数固定为$V_2=1$以及$\sigma=0$. 图(a)和图(b)中的红色圆点表示数值结果, 蓝色虚线表示拟合结果

    Fig. 7.  Deflection angle versus the gain/loss coefficient and period of the EIG: (a) The deflection angle $\theta$ as a function of the gain/loss coefficient $V_2$. Other system parameters are chosen as $K=1$ and $\sigma=0$. (b) $\theta$ as a function of the period $2\pi/K$. Other system parameters are chosen as $V_2=1$ and $\sigma=0$. The solid red circles in panels (a) and (b) represent the numerical result while the blue dashed lines are the fit ones

    Baidu
  • [1]

    Boettcher S, Bender C M 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [2]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [3]

    Makris K G, El-Ganainy R, Christodoulides D N, Musslimani Z H 2008 Phys. Rev. Lett. 100 103904Google Scholar

    [4]

    Feng L, El-Ganainy R, Ge L 2017 Nat. Photonics 11 752Google Scholar

    [5]

    Konotop V V, Shchesnovich V S, Zezyulin D A 2012 Phys. Lett. A 376 2750Google Scholar

    [6]

    Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y 2011 Science 333 729Google Scholar

    [7]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [8]

    Longhi S 2010 Phys. Rev. A 82 031801(RGoogle Scholar

    [9]

    Chong Y D, Ge L, Stone A D 2011 Phys. Rev. Lett. 106 093902Google Scholar

    [10]

    Sun Y, Tan W, Li H, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903Google Scholar

    [11]

    Feng L, Wong Z J, Ma R, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [12]

    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975Google Scholar

    [13]

    Jin L 2018 Phys. Rev. A 97 033840Google Scholar

    [14]

    Hodaei H, Hassan A U, Wittek S, et al. 2017 Nature 548 187Google Scholar

    [15]

    Chen W, Ozdemir Ș K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [16]

    Jin L 2018 Phys. Rev. A 97 012121Google Scholar

    [17]

    Xiao L, Zhan X, Bian Z H, et al. 2017 Nat. Phys. 13 1117Google Scholar

    [18]

    Naghiloo M, Abbasi M, Joglekar Y N 2019 Nat. Phys. 15 1232Google Scholar

    [19]

    Musslimani Z H, Makris K G, El-Ganainy R, Christodoulides D N 2008 Phys. Rev. Lett. 100 030402Google Scholar

    [20]

    Hu S M, Ma X, Lu D, Yang Z, Zheng Y, Hu W 2011 Phys. Rev. A 84 043818Google Scholar

    [21]

    Shi Z, Jiang X, Zhu X, Li H 2011 Phys. Rev. A 84 053855Google Scholar

    [22]

    He Y, Zhu X, Mihalache D, Liu J, Chen Z 2012 Phys. Rev. A 85 013831Google Scholar

    [23]

    Li C Y, Huang C M, Dong L W 2013 Chin. Phys. B 22 074209Google Scholar

    [24]

    Hu S M, Hu W 2013 Chin. Phys. B 22 074201Google Scholar

    [25]

    Hang C, Huang G 2015 Phys. Rev. A 91 043833Google Scholar

    [26]

    Yan Z, Wen Z, Hang C 2015 Phys. Rev. E 92 022913Google Scholar

    [27]

    Zhou K, Wei T, Sun H, He Y, Liu S 2015 Opt. Express 23 16903Google Scholar

    [28]

    Hang C, Huang G 2018 Phys. Rev. A 98 043840Google Scholar

    [29]

    Chen Y, Yan Z, Mihalache D 2020 Phys. Rev. E 102 012216Google Scholar

    [30]

    Gallagher T F 2008 Rydberg Atoms (England: Cambridge University Press) pp1–9

    [31]

    Mohapatra A K, Bason M G, Butscher B 2008 Nat. Phys. 4 89Google Scholar

    [32]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 82 2313Google Scholar

    [33]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [34]

    Sevincli S, Henkel N, Ates C, Pohl T 2011 Phys. Rev. Lett. 107 153001Google Scholar

    [35]

    Pritchard J D, Weatherill K J, Adams C S 2013 Annu. Rev. Cold At. Mol. 1 301

    [36]

    Firstenberg O, Adams C S, Hofferberth S 2016 J. Phys. B: At. Mol. Opt. Phys. 49 152003Google Scholar

    [37]

    Murray C, Pohl T 2016 Advances in Atomic, Molecular, and Optical Physics (New York: Academic Press) pp321–372

    [38]

    Zhu X Y, Xu Y L, Zou Y, Sun X C, He C, Lu M H, Liu X P, Chen Y F 2016 Appl. Phys. Lett. 109 111101Google Scholar

    [39]

    Liu Y M, Gao F, Fan C H, Wu J H 2017 Opt. Lett. 42 4283Google Scholar

    [40]

    Shui T, Yang W X, Liu S, Li L 2018 Phys. Rev. A 97 033819Google Scholar

    [41]

    Ma D, Yu D, Zhao X, Qian J 2019 Phys. Rev. A 99 033826Google Scholar

    [42]

    Hang C, Li W, Huang G 2019 Phys. Rev. A 100 043807Google Scholar

    [43]

    Agarwal G S, Vemuri G, Mossberg T W 1993 Phys. Rev. A 48 R4055(RGoogle Scholar

    [44]

    Bai Z, Huang G 2016 Opt. Express 24 4442Google Scholar

    [45]

    Bai Z, Li W, Huang G 2019 Optica 6 309Google Scholar

    [46]

    Hang C, Huang G, Konotop V V 2013 Phys. Rev. Lett. 110 083604Google Scholar

    [47]

    Hang C, Huang G 2017 Adv. Phys. X 2 737Google Scholar

    [48]

    Królikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys. Rev. E 64 016612Google Scholar

    [49]

    Lumer Y, Plotnik Y, Rechtsman M C, Segev M 2013 Phys. Rev. Lett. 111 263901Google Scholar

  • [1] 张光成, 孙武, 周志鹏, 全秀娥, 叶伏秋. 周期调制四通道光学波导的宇称-时间对称特性调控和动力学研究.  , 2024, 73(16): 164201. doi: 10.7498/aps.73.20240690
    [2] 江翠, 李家锐, 亓迪, 张莲莲. 具有宇称-时间反演对称性的虚势能对T-型石墨烯结构能谱和边缘态的影响.  , 2024, 73(20): 207301. doi: 10.7498/aps.73.20240871
    [3] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量.  , 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [4] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长.  , 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [5] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠.  , 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [6] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民. 用于铯原子里德伯态激发的509 nm波长脉冲激光系统.  , 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [7] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱.  , 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [8] 金星, 肖莘宇, 龚旗煌, 杨起帆. 微腔光梳的产生、发展及应用.  , 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [9] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应.  , 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [10] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性.  , 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [11] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220270
    [12] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学.  , 2022, 71(7): 074207. doi: 10.7498/aps.70.20220270
    [13] 唐原江, 梁超, 刘永椿. 宇称-时间对称与反对称研究进展.  , 2022, 71(17): 171101. doi: 10.7498/aps.71.20221323
    [14] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控.  , 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [15] 任波, 佘彦超, 徐小凤, 叶伏秋. 高阶效应下对称三量子点系统中光孤子稳定性研究.  , 2021, 70(22): 224205. doi: 10.7498/aps.70.20210942
    [16] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速.  , 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [17] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠.  , 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [18] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化.  , 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [19] 张秋菊, 盛政明, 张 杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子.  , 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [20] 刘山亮. 空间光孤子脉冲在平面光波导中的传输.  , 2003, 52(11): 2825-2830. doi: 10.7498/aps.52.2825
计量
  • 文章访问数:  4011
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-04-06
  • 上网日期:  2022-06-23
  • 刊出日期:  2022-07-05

/

返回文章
返回
Baidu
map