搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固体氧化物燃料电池温升模拟中入口异常高温度梯度研究

申双林 张小坤 万兴文 郑克晴 凌意瀚 王绍荣

引用本文:
Citation:

固体氧化物燃料电池温升模拟中入口异常高温度梯度研究

申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣

Study on extremely high temperature gradient at entrance of solid oxide fuel cell by preheating model

Shen Shuang-Lin, Zhang Xiao-Kun, Wan Xing-Wen, Zheng Ke-Qing, Ling Yi-Han, Wang Shao-Rong
PDF
HTML
导出引用
  • 针对固体氧化物燃料电池热循环失效问题, 建立了固体氧化物燃料电池热气体预热动态模型, 研究了电池内最大温度梯度分布规律和入口异常高温度梯度形成的原因, 结果表明: 在热气体参数和预热方式变化时, 电池内最大温度梯度始终处于电池入口边缘处的电极表面; 电池入口处存在异常高的温度梯度, 且在入口一小段区域内, 温度梯度沿流动方向迅速下降; 其原因是模型中入口采用均一的平均速度和温度, “入口效应”强化气体与电池换热; 采用入口段延长的方式可使入口速度充分发展, 降低电池内最大温度梯度, 但由于均一温度入口并未优化, 入口处仍然存在很大的温度梯度和温度梯度变化; 因此采用数值模拟研究电池预热升温安全性时, 仅采用最大温度梯度作为安全性判据会高估电池内热应力.
    The degradation or failure caused by thermal stress is a serious problem for solid oxide fuel cell (SOFC), especially in preheating process. The common working temperature for SOFC is more than 700 ℃, so it should be preheated to startup temperature (e.g. 600 ℃). The thermal stress induced by temperature gradient in SOFC is a crucial factor that results in the degradation or failure of SOFC, therefore there are many studies on the optimization of preheating process.Numerical model is an important tool in the study of SOFC preheating process, however there exists a serious discrepancy between the model results and experimental results. The numerical model always gives a very high temperature gradient in the SOFC which can result in SOFC crack according to the material permissible stress, and this result disagrees with the practical experimental result. In this paper, a hot gas preheating model of SOFC is developed and the model is verified by comparing with model results from the literature. Then, the location of maximum temperature gradient and distribution of temperature gradient in the SOFC are studied by this model, and the extremely high temperature gradient at entrance is analyzed. Some conclusions are given below.1) The maximum temperature gradient is always located at the edge of SOFC nearby the gas entrance. The variation of temperature rise rate and velocity of hot gas show negligible effect on the position of maximum temperature gradient in the gas flow direction. For single channel preheating method, the maximum temperature gradient is at the gas entrance. For the dual channel preheating method, the maximum temperature gradient is always at the cathode gas entrance whatever gas feeding way is co-flow or counter-flow, because the thermal conductivity of cathode is lowest.2) There is an extremely high temperature gradient at the gas entrance, and the temperature gradient sharply decreases along the gas flowing direction at the small entrance section. The extremely high temperature gradient may result from the uniform inlet temperature and velocity set in the model, and the entrance effect can greatly enhance the heat transfer between gas and SOFC component due to the large difference in velocity and temperature at the entrance section.3) The entrance extension of gas channel can give rise to a fully developed velocity distribution and reduce the temperature gradient at SOFC entrance, however, there is always a high temperature gradient at the entrance section of SOFC due to the uniform inlet gas temperature. Therefore, the maximum temperature gradient given by numerical model as a criterion of SOFC safety can overestimate the thermal stress, and the distribution of temperature gradient in SOFC should be analyzed together to optimize the preheating process.
      通信作者: 王绍荣, 5714@cumt.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 51836004)和国家自然科学基金联合基金(批准号: U2005215)资助的课题.
      Corresponding author: Wang Shao-Rong, 5714@cumt.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51836004), and The Joint Funds of the National Natural Science Foundation of China (Grant No. U2005215).
    [1]

    衣宝廉 2003 燃料电池——原理·技术·应用 (北京: 化学工业出版社)

    Yi B L 2003 Fuel Cells: Theory, Technology and Appliction (Beijing: Chemical Industry Press) (in Chinese)

    [2]

    Singhal S C, Kendall K 2003 High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications (Amsterdam: ELSEVIER)

    [3]

    Lymperopoulos N, Tsimis D, Aguilo-Rullan A, et al. 2019 ECS Trans. 91 9Google Scholar

    [4]

    Vora S D, Jesionowski G, Williams M C 2019 ECS Trans. 91 27Google Scholar

    [5]

    Yokokawa H, Suzuki M, Yoda M, et al. 2019 Fuel Cells 19 311

    [6]

    Hayun H, Wolf R, Barad C, et al. 2020 J. Alloy. Compd. 821 153490Google Scholar

    [7]

    Xu M, Li T S, Yang M, et al. 2016 Int. J. Hydrogen Energy 41 14927Google Scholar

    [8]

    Xie J M, Hao W Q, Wang F H 2019 Int. J. Energy Res. 43 3020Google Scholar

    [9]

    樊鹏飞, 张兄文, 李国君等 2012 西安交通大学学报 46 75

    Fan P F, Zhang X, Li G et al. 2012 J. Xi'an Jiaotong Univ. 46 75

    [10]

    Hanasaki M, Uryu C, Taniguchi S, et al. 2013 ECS Trans. 57 691Google Scholar

    [11]

    Bujalski W, Dikwal C M, Kendall K 2007 J. Power Sources 171 96Google Scholar

    [12]

    Apfel H, Rzepka M, Tu H, et al. 2006 J. Power Sources 154 370Google Scholar

    [13]

    Mirahmadi A, Valefi K 2011 J. Fuel Cell Sci. Technol. 8 061008Google Scholar

    [14]

    Selimovic A, Kemm M, Torisson T, et al. 2005 J. Power Sources 145 463Google Scholar

    [15]

    Damm D L, Fedorov A G 2006 J. Power Sources 159 956Google Scholar

    [16]

    Colpan C O, Hamdullahpur F, Dincer I 2010 J. Power Sources 195 3579Google Scholar

    [17]

    Chen M H, Jiang T L 2011 Int. J. Hydrogen Energy 36 6882Google Scholar

    [18]

    Yuan P, Liu S F 2016 Int. J. Hydrogen Energy 41 12377Google Scholar

    [19]

    Peksen M 2015 Int. J. Hydrogen Energy 40 12362Google Scholar

    [20]

    Peksen M 2018 Int. J. Hydrogen Energy 43 354Google Scholar

    [21]

    Peksen M, Al-Masri A, Blum L, et al. 2013 Int. J. Hydrogen Energy 38 4099Google Scholar

    [22]

    Zheng K, Kuang Y, Rao Z, et al. 2019 J. Renewable Sustainable Energy 11 014301Google Scholar

    [23]

    Atkinson A, Sun B 2007 Mater. Sci. Technol. 23 1135Google Scholar

    [24]

    Sun B, Rudkin R A, Atkinson A 2009 Fuel Cells 9 805Google Scholar

    [25]

    Zhang Y, Xia C 2010 J. Power Sources 195 6611

    [26]

    Dikwal C M, Bujalski W, Kendall K 2009 J. Power Sources 193 241

    [27]

    Aguiar P, Adjiman C S, Brandon N P 2005 J. Power Sources 147 136Google Scholar

    [28]

    Kakac S, Pramuanjaroenkij A, Zhou X Y 2007 Int. J. Hydrogen Energy 32 761Google Scholar

    [29]

    Beale S B, Andersson M, Boigues-Muñoz C, et al. 2021 Prog. Energy Combust. Sci. 85 100902Google Scholar

    [30]

    Chen M H, Jiang T L 2012 J. Power Sources 220 331Google Scholar

    [31]

    Gamrat G, Favre-Marinet M, Asendrych D 2005 Int. J. Heat Mass Transfer 48 2943Google Scholar

  • 图 1  SOFC数值模拟选取的可重复单元

    Fig. 1.  Repeating unit in SOFC model.

    图 2  (a) SOFC数值模型网格无关性和(b)时间步长的验证

    Fig. 2.  (a) Verification of mesh independence and (b) time step size for SOFC numerical model.

    图 3  本文预热温升数值模型结果与文献[15]中结果对比图

    Fig. 3.  Comparison of the current preheating model results with model results given in Ref.[15].

    图 4  加热气体不同升温速率(a)和不同入口速度(b)时SOFC内最大温度梯度位置示意图((a) 1 K/s升温600 s后阴极入口横截面处的温度分布, 图中温度单位为K)

    Fig. 4.  The location of maximum temperature gradient in SOFC under different temperature rise rate (a) and inlet velocity (b) (Figure (a) is the temperature distribution of the cathode inlet section at 600 s with a 1 K/s increasing rate, temperature unit is K)

    图 5  不同气体入口升温速率(a)和入口速度(b)时, SOFC内温度梯度沿流道方向变化曲线

    Fig. 5.  The plotting of temperature gradient in the SOFC on Z direction under different gases temperature rise rate (a) and different inlet velocity (b).

    图 6  不同预热方式时, SOFC内温度梯度沿流道方向变化曲线

    Fig. 6.  The plotting of temperature gradient in the SOFC on z direction under different preheating method.

    图 7  600 s时, SOFC阴极入口处流道对称面上的速度分布图

    Fig. 7.  The distribution of velocity in symmetrical surface of SOFC cathode channel near inlet at 600 s.

    图 9  600 s时, 入口段延长后阴极入口处温度分布与原模型温度分布的对比图

    Fig. 9.  Comparison of temperature distribution near cathode inlet between the original model and extended entrance model at 600 s.

    图 8  600 s时, 入口延长与原模型得到的SOFC内温度梯度沿流道方向分布对比图

    Fig. 8.  Comparison of the distribution of temperature gradient along gas channel in SOFC between the original model and extended entrance model at 600 s.

    表 1  SOFC结构几何参数

    Table 1.  The geometry parameter of SOFC in this study

    参数
    流道高/mm1.0
    流道宽/mm1.0
    脊宽/mm0.5
    阳极厚度/mm0.4
    电解质厚度/mm0.01
    阴极厚度/mm0.07
    流道长度/mm100
    下载: 导出CSV

    表 2  SOFC各部分结构物性参数[15]

    Table 2.  The physical parameters for each component of SOFC

    参数阳极阴极电解质集流板
    密度/(kg⋅m–3)3030331051638030
    定压比热容/(J⋅kg–1K–1)595573606502
    导热系数/(W⋅m–1K–1)5.841.862.1620
    孔隙率0.42[21]0.36[21]00
    渗透性系数 D0.034[21]0.037[21]00
    平均颗粒直径/μm1.41.4//
    下载: 导出CSV
    Baidu
  • [1]

    衣宝廉 2003 燃料电池——原理·技术·应用 (北京: 化学工业出版社)

    Yi B L 2003 Fuel Cells: Theory, Technology and Appliction (Beijing: Chemical Industry Press) (in Chinese)

    [2]

    Singhal S C, Kendall K 2003 High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications (Amsterdam: ELSEVIER)

    [3]

    Lymperopoulos N, Tsimis D, Aguilo-Rullan A, et al. 2019 ECS Trans. 91 9Google Scholar

    [4]

    Vora S D, Jesionowski G, Williams M C 2019 ECS Trans. 91 27Google Scholar

    [5]

    Yokokawa H, Suzuki M, Yoda M, et al. 2019 Fuel Cells 19 311

    [6]

    Hayun H, Wolf R, Barad C, et al. 2020 J. Alloy. Compd. 821 153490Google Scholar

    [7]

    Xu M, Li T S, Yang M, et al. 2016 Int. J. Hydrogen Energy 41 14927Google Scholar

    [8]

    Xie J M, Hao W Q, Wang F H 2019 Int. J. Energy Res. 43 3020Google Scholar

    [9]

    樊鹏飞, 张兄文, 李国君等 2012 西安交通大学学报 46 75

    Fan P F, Zhang X, Li G et al. 2012 J. Xi'an Jiaotong Univ. 46 75

    [10]

    Hanasaki M, Uryu C, Taniguchi S, et al. 2013 ECS Trans. 57 691Google Scholar

    [11]

    Bujalski W, Dikwal C M, Kendall K 2007 J. Power Sources 171 96Google Scholar

    [12]

    Apfel H, Rzepka M, Tu H, et al. 2006 J. Power Sources 154 370Google Scholar

    [13]

    Mirahmadi A, Valefi K 2011 J. Fuel Cell Sci. Technol. 8 061008Google Scholar

    [14]

    Selimovic A, Kemm M, Torisson T, et al. 2005 J. Power Sources 145 463Google Scholar

    [15]

    Damm D L, Fedorov A G 2006 J. Power Sources 159 956Google Scholar

    [16]

    Colpan C O, Hamdullahpur F, Dincer I 2010 J. Power Sources 195 3579Google Scholar

    [17]

    Chen M H, Jiang T L 2011 Int. J. Hydrogen Energy 36 6882Google Scholar

    [18]

    Yuan P, Liu S F 2016 Int. J. Hydrogen Energy 41 12377Google Scholar

    [19]

    Peksen M 2015 Int. J. Hydrogen Energy 40 12362Google Scholar

    [20]

    Peksen M 2018 Int. J. Hydrogen Energy 43 354Google Scholar

    [21]

    Peksen M, Al-Masri A, Blum L, et al. 2013 Int. J. Hydrogen Energy 38 4099Google Scholar

    [22]

    Zheng K, Kuang Y, Rao Z, et al. 2019 J. Renewable Sustainable Energy 11 014301Google Scholar

    [23]

    Atkinson A, Sun B 2007 Mater. Sci. Technol. 23 1135Google Scholar

    [24]

    Sun B, Rudkin R A, Atkinson A 2009 Fuel Cells 9 805Google Scholar

    [25]

    Zhang Y, Xia C 2010 J. Power Sources 195 6611

    [26]

    Dikwal C M, Bujalski W, Kendall K 2009 J. Power Sources 193 241

    [27]

    Aguiar P, Adjiman C S, Brandon N P 2005 J. Power Sources 147 136Google Scholar

    [28]

    Kakac S, Pramuanjaroenkij A, Zhou X Y 2007 Int. J. Hydrogen Energy 32 761Google Scholar

    [29]

    Beale S B, Andersson M, Boigues-Muñoz C, et al. 2021 Prog. Energy Combust. Sci. 85 100902Google Scholar

    [30]

    Chen M H, Jiang T L 2012 J. Power Sources 220 331Google Scholar

    [31]

    Gamrat G, Favre-Marinet M, Asendrych D 2005 Int. J. Heat Mass Transfer 48 2943Google Scholar

  • [1] 谢佳苗, 李京阳, 周佳逸, 郝文乾. 含有预裂纹的固体氧化物燃料电池的电极裂纹扩展分析.  , 2024, 73(23): . doi: 10.7498/aps.73.20241176
    [2] 徐晗, 张璐. 空间电荷层效应对固体氧化物燃料电池三相界面附近氧空位传输的影响.  , 2021, 70(12): 128801. doi: 10.7498/aps.70.20210012
    [3] 徐晗, 张璐, 党政. 固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理.  , 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [4] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型.  , 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [5] 李志旋, 岳明鑫, 周官群. 三维电磁扩散场数值模拟及磁化效应的影响.  , 2019, 68(3): 030201. doi: 10.7498/aps.68.20181567
    [6] 梁煜, 关奔, 翟志刚, 罗喜胜. 激波汇聚效应对球形气泡演化影响的数值研究.  , 2017, 66(6): 064701. doi: 10.7498/aps.66.064701
    [7] 陆勇俊, 杨溢, 王峰会, 楼康, 赵翔. 连续梯度的功能层对燃料电池在初始还原过程中曲率及残余应力的影响.  , 2016, 65(9): 098102. doi: 10.7498/aps.65.098102
    [8] 刘宸, 孙宏祥, 袁寿其, 夏建平. 基于温度梯度分布的宽频带声聚焦效应.  , 2016, 65(4): 044303. doi: 10.7498/aps.65.044303
    [9] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟.  , 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [10] 封国宝, 王芳, 曹猛. 电子辐照聚合物带电特性多参数共同作用的数值模拟.  , 2015, 64(22): 227901. doi: 10.7498/aps.64.227901
    [11] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正.  , 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [12] 刘腊群, 刘大刚, 王学琼, 杨超, 夏蒙重, 彭凯. 磁绝缘传输线中心汇流区电子能量沉积及温度变化的数值模拟研究.  , 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [13] 李哲, 江海河, 王礼, 杨经纬, 吴先友. 2 m Cr,Tm,Ho:YAG激光热退偏效应的数值模拟及实验研究.  , 2012, 61(4): 044205. doi: 10.7498/aps.61.044205
    [14] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究.  , 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [15] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟.  , 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [16] 孟广为, 李敬宏, 裴文兵, 李双贵, 张维岩. 温度梯度对平面金壁发射能流平衡性的影响.  , 2011, 60(2): 025210. doi: 10.7498/aps.60.025210
    [17] 陈曦, 王霞, 吴锴, 彭宗仁, 成永红. 温度梯度场对电声脉冲法空间电荷测量波形的影响.  , 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [18] 朱樟明, 钟波, 郝报田, 杨银堂. 一种考虑温度的分布式互连线功耗模型.  , 2009, 58(10): 7124-7129. doi: 10.7498/aps.58.7124
    [19] 曹士英, 宋振明, 秦瑀, 王清月, 张志刚. 飞秒激光在不同位置温度梯度的惰性气体中成丝及光谱展宽的差异.  , 2009, 58(6): 3971-3976. doi: 10.7498/aps.58.3971
    [20] 江慧丰, 张青川, 陈忠家, 伍小平. 退火铝合金中Portevin-Le Chatelier效应的数值模拟研究.  , 2006, 55(6): 2856-2859. doi: 10.7498/aps.55.2856
计量
  • 文章访问数:  4063
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-06
  • 修回日期:  2022-04-03
  • 上网日期:  2022-07-28
  • 刊出日期:  2022-08-20

/

返回文章
返回
Baidu
map