搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑材料BaMnSb2的红外光谱学研究

邱子阳 陈岩 邱祥冈

引用本文:
Citation:

拓扑材料BaMnSb2的红外光谱学研究

邱子阳, 陈岩, 邱祥冈

Infrared spectroscopic study of topological material BaMnSb2

Qiu Zi-Yang, Chen Yan, Qiu Xiang-Gang
PDF
HTML
导出引用
  • 对于新型拓扑材料BaMnSb2, 研究了从7 K到常温下温度依赖的宽频红外光谱特性. 随着温度的降低, 绝对反射谱中等离子体极小值有着明显的蓝移, 表明载流子浓度存在随温度变化的行为. 在光电导谱的实部中存在两段随着频率线性增加的响应, 它们的线性外延不经过原点, 表明BaMnSb2的费米能级附近有打开能隙的Dirac型色散. 此外, 在低温下还发现了一段不随频率变化的光电导, 且无法用传统的Drude-Lorentz模型拟合. 因此本文引入了一个恒定的光电导分量, 得到了满意的拟合结果. 通过计算和分析, 我们认为恒定光电导分量可能来自于拓扑材料BaMnSb2的表面态响应.
    A detailed infrared optical spectrum of the new topological material BaMnSb2 has been measured at temperatures ranging from 7 K to 295 K. As the temperature decreases, the plasma minimum has a clear blue shift in reflectivity spectrum, indicating that the carrier density changes with temperature. In the real part of the optical conductivity $\sigma_{1}(\omega)$, two linearly-increased components can be identified, but neither of their extrapolation pass through the origin, which proves that BaMnSb2 has a gapped Dirac dispersion near the Fermi level. Comparing with the theoretical calculation by using first-principles methods, the onset of these two linearly-increased components are in good agreement with the band structures. In addition, a range of constant optical conductivity is found in $\sigma_{1}(\omega)$, which cannot be described well by the Drude-Lorentz model. Therefore, we introduce a frequency-independent component to fit $\sigma_{1}(\omega)$ successfully. However, different from the Dirac nodal-line semimetal YbMnSb2 which shares same fitting results as well as crystal structure, the constant component in BaMnSb2 has a small proportion of $\sigma_{1}(\omega)$. Through calculation and analysis, we attribute the constant component to the surface state of BaMnSb2.
      通信作者: 邱祥冈, xgqiu@iphy.ac.cn
      Corresponding author: Qiu Xiang-Gang, xgqiu@iphy.ac.cn
    [1]

    Dziawa P, Kowalski B J, Dybko K, Buczko R, Szczerbakow A, Szot M, Lusakowska E, Balasubra- manian T, Wojek B M, Berntsen M H 2012 Nat. Mater. 11 1023Google Scholar

    [2]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [3]

    Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [4]

    Ma X M, Zhao Y, Zhang K, Kumar S, Lu R, Li J, Yao Q, Shao J, Hou F, Wu X 2021 Phys. Rev. B 103 121112Google Scholar

    [5]

    de Boer J C, Wielens D H, Voerman J A, de Ronde B, Huang Y, Golden M S, Li C, Brinkman A 2019 Phys. Rev. B 99 085124Google Scholar

    [6]

    Hsieh D, Xia Y, Qian D, Wray L, Meier F, Dil J H, Osterwalder J, Patthey L, Fedorov A V, Lin H 2009 Phys. Rev. Lett. 103 146401Google Scholar

    [7]

    Su Y H, Shi W, Felser C, Sun Y 2018 Phys. Rev. B 97 155431Google Scholar

    [8]

    Singh S, Garcia-Castro A C, Valencia-Jaime I, Munoz F, Romero A H 2016 Phys. Rev. B 94 161116Google Scholar

    [9]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [10]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [11]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [12]

    Park J, Lee G, Wolff-Fabris F, Koh Y Y, Eom M J, Kim Y K, Farhan M A, Jo Y J, Kim C, Shim J H 2011 Phys. Rev. Lett. 107 126402Google Scholar

    [13]

    Wang K F, Graf D, Wang L M, Lei H C, Tozer S W, Petrovic C 2012 Phys. Rev. B 85 041101

    [14]

    Li L J, Wang K F, Graf D, Wang L M, Wang A F, Petrovic C 2016 Phys. Rev. B 93 115141Google Scholar

    [15]

    Wang A F, Zaliznyak I, Ren W J, Wu L J, Graf D, Garlea V O, Warren J B, Bozin E, Zhu Y M, Petrovic C 2016 Phys. Rev. B 94 165161Google Scholar

    [16]

    Wang K F, Graf D, Lei H C, Tozer S W, Petrovic C 2011 Phys. Rev. B 84 220401Google Scholar

    [17]

    May A F, McGuire M A, Sales B C 2014 Phys. Rev. B 90 075109Google Scholar

    [18]

    Chinotti M, Pal A, Ren W J, Petrovic C, Degiorgi L 2016 Phys. Rev. B 94 245101Google Scholar

    [19]

    Lee G, Farhan M A, Kim J S, Shim J H 2013 Phys. Rev. B 87 245104Google Scholar

    [20]

    Liu J, Hu J, Cao H, Zhu Y, Chuang A, Graf D, Adams D J, Radmanesh S M A, Spinu L, Chiorescu I 2016 Sci. Rep. 6 30525Google Scholar

    [21]

    Chaudhuri D, Cheng B, Yaresko A, Gibson Q D, Cava R J, Armitage N P 2017 Phys. Rev. B 96 075151Google Scholar

    [22]

    Qiu Z Y, Le C C, Dai Y M, Xu B, He J B, Yang R, Chen G F, Hu J P, Qiu X G 2018 Phys. Rev. B 98 115151Google Scholar

    [23]

    Kealhofer R, Jang S, Griffin S M, John C, Benavides K A, Doyle S, Helm T, Moll P J W, Neaton J B, Chan J Y 2018 Phys. Rev. B 97 045109Google Scholar

    [24]

    Wang Y Y, Xu S, Sun L L, Xia T L 2018 Phys. Rev. Mater. 2 021201Google Scholar

    [25]

    Qiu Z Y, Le C C, Liao Z Y, Xu B, Yang R, Hu J P, Dai Y M, Qiu X G 2019 Phys. Rev. B 100 125136Google Scholar

    [26]

    Qiu Z Y, Liao Z Y, Qiu X G 2019 Chin. Phys. B 28 047801Google Scholar

    [27]

    Farhan M A, Lee G, Shim J H 2014 J. Phys. Condens. Matter 26 042201Google Scholar

    [28]

    Rong H T, Zhou L Q, He J B, Song C Y, Xu Y, Cai Y Q, Li C, Wang Q Y, Zhao L, Liu G D, Xu Z Y, Chen G F, Weng H M, Zhou X J 2021 Chin. Phys. B 30 067403Google Scholar

    [29]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90

    [30]

    Carbotte J P 2017 J. Phys. Condens. Matter 29 045301Google Scholar

    [31]

    Hosur P, Parameswaran S A, Vishwanath A 2012 Phys. Rev. Lett. 108 046602Google Scholar

    [32]

    Schilling M B, Schoop L M, Lotsch B V, Dressel M, Pronin A V 2017 Phys. Rev. Lett. 119 187401Google Scholar

    [33]

    Topp A, Queiroz R, Grüneis A, Müchler L, Rost A W, Varykhalov A, Marchenko D, Krivenkov M, Rodolakis F, McChesney J L 2017 Phys. Rev. X 7 041073

    [34]

    Chen R Y, Zhang S J, Zhang M Y, Dong T, Wang N L 2017 Phys. Rev. Lett. 118 107402Google Scholar

    [35]

    Shao Y, Sun Z, Wang Y, Xu C, Sankar R, Breindel A J, Cao C, Fogler M M, Millis A J, Chou F 2019 Proc. Natl. Acad. Sci. 11v 1168

    [36]

    Homes C C, Reedyk M, Cradles D A, Timusk T 1993 Appl. Opt. 32 2976Google Scholar

    [37]

    Li B W, Jiang W C, Chen G Y, Xiang Y, Xie W, Dai Y M, Zhu X Y, Yang H, Wen H H 2020 Sci. China-Phys. Mech. Astron. 63 117011Google Scholar

    [38]

    Kuzmenko A B, van Heumen E, Carbone F, van der Marel D 2008 Phys. Rev. Lett. 100 117401Google Scholar

    [39]

    Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F 2008 Phys. Rev. Lett. 101 196405Google Scholar

    [40]

    Ando T, Zheng Y, Suzuura H 2002 J. Phys. Soc. Jpn. 71 1318Google Scholar

    [41]

    Habe T, Koshino M 2018 Phys. Rev. B 98 125201Google Scholar

  • 图 1  BaMnSb2在5个温度点50—3000 cm–1范围内的反射率. 插图为室温下到30000 cm–1的反射谱

    Fig. 1.  Reflectivity of BaMnSb2 at five representative temperatures between 50–3000 cm–1. The inset displays the reflectivity up to 30000 cm–1 at room temperature

    图 2  通过Kramers-Kronig计算得到相应的光电导的实部. 插图为室温下到更高频率的光电导谱

    Fig. 2.  The corresponding real part of optical conductivity $ \sigma_{1}(\omega) $ is calculated through Kramers-Kronig transformation. The inset shows $ \sigma_{1}(\omega) $ over a broad frequency range at room temperature

    图 3  蓝色实线为7 K时BaMnSb2在高频波段的光电导谱, 粉色虚线和黑色虚线分别示意了两段线性增加的光电导. 插图是不同温度下粉色虚线线性外延与横坐标的交点, 对应了Dirac能隙随温度变化的关系

    Fig. 3.  The blue solid curve is $ \sigma_{1}(\omega) $ for BaMnSb2 at 7 K in high-frequency range. The pink and dark dashed lines denote two range of linearly-increased $ \sigma_{1}(\omega) $. The inset exhibits extrapolation of the pink dashed line to zero conductivity at finite frequency, corresponding to the temperature-dependent Dirac gap

    图 4  BaMnSb2在7 K时的$ \sigma_{1}(\omega) $, 其中黑色虚线注明了恒定光电导组分. 插图为$ \sigma_{1}(\omega) $的谱重随频率变化的关系, 其中黑色虚线表明在350—1150 cm–1范围内谱重随频率线性增加

    Fig. 4.  $ \sigma_{1}(\omega) $ for BaMnSb2 at 7 K. The dark dashed line denotes the frequency-independent component. The inset portrays the spectral weight $ S(\omega) $ at 7 K, and the dark dashed line represents $ S(\omega) $ follows an ω behavior in the range between 350–1150 cm–1

    图 5  $ \sigma_{1}(\omega) $在0—2500 cm–1范围内的拟合结果, 拟合的组分为一个绿色的Drude 分量, 一个粉色的Lorentz分量, 和一个深黄色的恒定分量. 对于100和200 cm–1附近的红外活性声子暂不讨论

    Fig. 5.  Fitting results for $ \sigma_{1}(\omega) $ in 0–2500 cm–1 frequency range, which is decomposed into one Drude term (green dashed line), one Lorentz term (pink dashed line), and a constant component (dark yellow dashed line). The infrared-active phonons near 100 and 200 cm–1 are ignored

    Baidu
  • [1]

    Dziawa P, Kowalski B J, Dybko K, Buczko R, Szczerbakow A, Szot M, Lusakowska E, Balasubra- manian T, Wojek B M, Berntsen M H 2012 Nat. Mater. 11 1023Google Scholar

    [2]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [3]

    Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [4]

    Ma X M, Zhao Y, Zhang K, Kumar S, Lu R, Li J, Yao Q, Shao J, Hou F, Wu X 2021 Phys. Rev. B 103 121112Google Scholar

    [5]

    de Boer J C, Wielens D H, Voerman J A, de Ronde B, Huang Y, Golden M S, Li C, Brinkman A 2019 Phys. Rev. B 99 085124Google Scholar

    [6]

    Hsieh D, Xia Y, Qian D, Wray L, Meier F, Dil J H, Osterwalder J, Patthey L, Fedorov A V, Lin H 2009 Phys. Rev. Lett. 103 146401Google Scholar

    [7]

    Su Y H, Shi W, Felser C, Sun Y 2018 Phys. Rev. B 97 155431Google Scholar

    [8]

    Singh S, Garcia-Castro A C, Valencia-Jaime I, Munoz F, Romero A H 2016 Phys. Rev. B 94 161116Google Scholar

    [9]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [10]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [11]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [12]

    Park J, Lee G, Wolff-Fabris F, Koh Y Y, Eom M J, Kim Y K, Farhan M A, Jo Y J, Kim C, Shim J H 2011 Phys. Rev. Lett. 107 126402Google Scholar

    [13]

    Wang K F, Graf D, Wang L M, Lei H C, Tozer S W, Petrovic C 2012 Phys. Rev. B 85 041101

    [14]

    Li L J, Wang K F, Graf D, Wang L M, Wang A F, Petrovic C 2016 Phys. Rev. B 93 115141Google Scholar

    [15]

    Wang A F, Zaliznyak I, Ren W J, Wu L J, Graf D, Garlea V O, Warren J B, Bozin E, Zhu Y M, Petrovic C 2016 Phys. Rev. B 94 165161Google Scholar

    [16]

    Wang K F, Graf D, Lei H C, Tozer S W, Petrovic C 2011 Phys. Rev. B 84 220401Google Scholar

    [17]

    May A F, McGuire M A, Sales B C 2014 Phys. Rev. B 90 075109Google Scholar

    [18]

    Chinotti M, Pal A, Ren W J, Petrovic C, Degiorgi L 2016 Phys. Rev. B 94 245101Google Scholar

    [19]

    Lee G, Farhan M A, Kim J S, Shim J H 2013 Phys. Rev. B 87 245104Google Scholar

    [20]

    Liu J, Hu J, Cao H, Zhu Y, Chuang A, Graf D, Adams D J, Radmanesh S M A, Spinu L, Chiorescu I 2016 Sci. Rep. 6 30525Google Scholar

    [21]

    Chaudhuri D, Cheng B, Yaresko A, Gibson Q D, Cava R J, Armitage N P 2017 Phys. Rev. B 96 075151Google Scholar

    [22]

    Qiu Z Y, Le C C, Dai Y M, Xu B, He J B, Yang R, Chen G F, Hu J P, Qiu X G 2018 Phys. Rev. B 98 115151Google Scholar

    [23]

    Kealhofer R, Jang S, Griffin S M, John C, Benavides K A, Doyle S, Helm T, Moll P J W, Neaton J B, Chan J Y 2018 Phys. Rev. B 97 045109Google Scholar

    [24]

    Wang Y Y, Xu S, Sun L L, Xia T L 2018 Phys. Rev. Mater. 2 021201Google Scholar

    [25]

    Qiu Z Y, Le C C, Liao Z Y, Xu B, Yang R, Hu J P, Dai Y M, Qiu X G 2019 Phys. Rev. B 100 125136Google Scholar

    [26]

    Qiu Z Y, Liao Z Y, Qiu X G 2019 Chin. Phys. B 28 047801Google Scholar

    [27]

    Farhan M A, Lee G, Shim J H 2014 J. Phys. Condens. Matter 26 042201Google Scholar

    [28]

    Rong H T, Zhou L Q, He J B, Song C Y, Xu Y, Cai Y Q, Li C, Wang Q Y, Zhao L, Liu G D, Xu Z Y, Chen G F, Weng H M, Zhou X J 2021 Chin. Phys. B 30 067403Google Scholar

    [29]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90

    [30]

    Carbotte J P 2017 J. Phys. Condens. Matter 29 045301Google Scholar

    [31]

    Hosur P, Parameswaran S A, Vishwanath A 2012 Phys. Rev. Lett. 108 046602Google Scholar

    [32]

    Schilling M B, Schoop L M, Lotsch B V, Dressel M, Pronin A V 2017 Phys. Rev. Lett. 119 187401Google Scholar

    [33]

    Topp A, Queiroz R, Grüneis A, Müchler L, Rost A W, Varykhalov A, Marchenko D, Krivenkov M, Rodolakis F, McChesney J L 2017 Phys. Rev. X 7 041073

    [34]

    Chen R Y, Zhang S J, Zhang M Y, Dong T, Wang N L 2017 Phys. Rev. Lett. 118 107402Google Scholar

    [35]

    Shao Y, Sun Z, Wang Y, Xu C, Sankar R, Breindel A J, Cao C, Fogler M M, Millis A J, Chou F 2019 Proc. Natl. Acad. Sci. 11v 1168

    [36]

    Homes C C, Reedyk M, Cradles D A, Timusk T 1993 Appl. Opt. 32 2976Google Scholar

    [37]

    Li B W, Jiang W C, Chen G Y, Xiang Y, Xie W, Dai Y M, Zhu X Y, Yang H, Wen H H 2020 Sci. China-Phys. Mech. Astron. 63 117011Google Scholar

    [38]

    Kuzmenko A B, van Heumen E, Carbone F, van der Marel D 2008 Phys. Rev. Lett. 100 117401Google Scholar

    [39]

    Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F 2008 Phys. Rev. Lett. 101 196405Google Scholar

    [40]

    Ando T, Zheng Y, Suzuura H 2002 J. Phys. Soc. Jpn. 71 1318Google Scholar

    [41]

    Habe T, Koshino M 2018 Phys. Rev. B 98 125201Google Scholar

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件.  , 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云. 量子材料的弗洛凯调控.  , 2023, 72(23): 234202. doi: 10.7498/aps.72.20231423
    [3] 巴佳燕, 陈复洋, 段后建, 邓明勋, 王瑞强. 拓扑材料中的平面霍尔效应.  , 2023, 72(20): 207201. doi: 10.7498/aps.72.20230905
    [4] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长.  , 2023, 72(3): 038103. doi: 10.7498/aps.72.20221574
    [5] 邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩. 三乙胺分子构象与红外光谱的理论研究.  , 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [6] 姜天舒, 肖孟, 张昭庆, 陈子亭. 周期与非周期传输线网络的物理与拓扑性质.  , 2020, 69(15): 150301. doi: 10.7498/aps.69.20200258
    [7] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导.  , 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [8] 王珊珊, 吴维康, 杨声远. 拓扑节线与节面金属的研究进展.  , 2019, 68(22): 227101. doi: 10.7498/aps.68.20191538
    [9] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱.  , 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [10] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究.  , 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [11] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究.  , 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [12] 王安静, 方勇华, 李大成, 崔方晓, 吴军, 刘家祥, 李扬裕, 赵彦东. 面阵探测下的污染云团红外光谱仿真.  , 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [13] 刘江平, 黎军, 刘元琼, 雷海乐, 韦建军. 低温下氘分子红外吸收特性研究.  , 2014, 63(2): 023301. doi: 10.7498/aps.63.023301
    [14] 刘江平, 毕鹏, 雷海乐, 黎军, 韦建军. 近三相点温度低温固体氘的红外吸收谱.  , 2013, 62(16): 163301. doi: 10.7498/aps.62.163301
    [15] 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥. 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究.  , 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [16] 孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋宝安, 沈祥, 徐铁峰. PbI2对远红外Te基硫系玻璃光学性能的影响.  , 2011, 60(11): 114212. doi: 10.7498/aps.60.114212
    [17] 刘晓东, 陶万军, 郑旭光, 萩原雅人, 孟冬冬, 张森林, 郭其新. 磁几何阻挫材料羟基氯化钴的中红外光谱特征.  , 2011, 60(3): 037803. doi: 10.7498/aps.60.037803
    [18] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响.  , 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [19] 毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐. 液氢平面低温冷冻靶的红外吸收谱.  , 2010, 59(11): 7531-7534. doi: 10.7498/aps.59.7531
    [20] 凌志华. 垂直排列液晶盒中反铁电液晶TFMHxPOCBC-D2偏振红外光谱研究.  , 2001, 50(2): 227-232. doi: 10.7498/aps.50.227
计量
  • 文章访问数:  3925
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-03
  • 修回日期:  2022-01-28
  • 上网日期:  2022-02-02
  • 刊出日期:  2022-05-20

/

返回文章
返回
Baidu
map