-
Electronic band crossing can not only form zero-dimensional nodal points, but also one dimensional nodal lines and two dimensional nodal surfaces. These topological band features have been attracting significant research interest, as they may lead to many special physical properties. In this article, we review the progress in this field, including the conceptual development, the character and classification of these nodal structures, and the material realization.
-
Keywords:
- topological materials /
- nodal line /
- nodal surface /
- band structure
[1] von Klitzing K, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494
Google Scholar
[2] Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405
Google Scholar
[3] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
Google Scholar
[4] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802
Google Scholar
[5] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801
Google Scholar
[6] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
Google Scholar
[7] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[8] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L, MacDonald A H 2006 Phys. Rev. B 74 165310
Google Scholar
[9] Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401
[10] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757
Google Scholar
[11] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766
Google Scholar
[12] Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803
Google Scholar
[13] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045
Google Scholar
[14] Fu L 2011 Phys. Rev. Lett. 106 106802
Google Scholar
[15] Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805
Google Scholar
[16] Schnyder A P, Ryu S, Furusaki A, Ludwig A W 2008 Phys. Rev. B 78 195125
Google Scholar
[17] Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2006 Rev. Mod. Phys. 88 035005
[18] Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959
Google Scholar
[19] Niu Q, Chang M C, Wu B, Xiao D, Cheng R 2017 Physical Effects of Geometric Phases (Singapore: World Scientific)
[20] Hořava P 2005 Phys. Rev. Lett. 95 016405
Google Scholar
[21] Zhao Y X, Wang Z D 2013 Phys. Rev. Lett. 110 240404
Google Scholar
[22] Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101
Google Scholar
[23] Nielsen H B, Ninomiya M 1983 Phys. Lett. B 130 389
Google Scholar
[24] Volovik G E 2003 The Universe in A Helium Droplet (Vol. 117) (Oxford: Oxford University Press on Demand)
[25] Guan S, Yu Z M, Liu Y, Liu G B, Dong L, Lu Y, Yao Y, Yang S A 2017 npj Quant. Mater. 2 23
Google Scholar
[26] Yang S A 2016 SPIN 6 1640003
Google Scholar
[27] Young S M, Zaheer S, Teo J C, Kane C L, Mele E J, Rappe A M 2012 Phys. Rev. Lett. 108 140405
Google Scholar
[28] Xu G, Weng H, Wang Z, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806
Google Scholar
[29] Weng H, Fang C, Fang Z, Dai X 2016 Phys. Rev. B 93 241202
Google Scholar
[30] Zhu Z, Winkler G W, Wu Q, Li J, Soluyanov A A 2016 Phys. Rev. X 6 031003
[31] Chang G, Xu S Y, Huang S M, Sanchez D S, Hsu C H, Bian G, Yu Z M, Belopolski L, Alidoust N, Zheng H, Chang T R, Jeng H T, Yang S A, Neupert T, Lin H, Hasan M Z 2017 Sci. Rep. 7 1688
Google Scholar
[32] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J, Bernevig B A 2016 Science 353 aaf5037
Google Scholar
[33] Wieder B J, Kim Y, Rappe A M, Kane C L 2016 Phys. Rev. Lett. 116 186402
Google Scholar
[34] Kennett M P, Komeilizadeh N, Kaveh K, Smith P M 2011 Phys. Rev. A 83 053636
Google Scholar
[35] Roy B, Smith P M, Kennett M P 2012 Phys. Rev. B 85 235119
Google Scholar
[36] Chen C, Wang S S, Liu L, Yu Z M, Sheng X L, Chen Z, Yang S A 2017 Phys. Rev. Mater. 1 044201
Google Scholar
[37] Liu Q, Zunger A 2017 Phys. Rev. X 7 021019
[38] Yu W C, Zhou X, Chuang F C, Yang S A, Lin H, Bansil A 2018 Phys. Rev. Mater. 2 051201
Google Scholar
[39] Zhu Z, Liu Y, Yu Z M, Wang S S, Zhao Y X, Feng Y, Sheng X L, Yang S A 2018 Phys. Rev. B 98 125104
Google Scholar
[40] Son D T, Spivak B Z 2013 Phys. Rev. B 88 104412
Google Scholar
[41] Gao Y, Yang S A, Niu Q 2017 Phys. Rev. B 95 165135
Google Scholar
[42] Luo Y, McDonald R D, Rosa P F S, Scott B, Wakeham N, Ghimire N J, Bauer E D, Thompson J D, Ronning F 2016 Sci. Rep. 6 27294
Google Scholar
[43] Li Y, Li L, Wang J, Wang T, Xu X, Xi C, Cao C, Dai J 2016 Phys. Rev. B 94 121115
Google Scholar
[44] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X, Fang Z 2012 Phys. Rev. B 85 195320
Google Scholar
[45] Wang Z, Weng H, Wu Q, Dai X, Fang Z 2013 Phys. Rev. B 88 125427
Google Scholar
[46] Weng H, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029
[47] Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B K, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H, Hasan M Z 2015 Nat. Commun. 6 7373
Google Scholar
[48] Tang F, Po H C, Vishwanath A, Wan X 2019 Nature 566 486
Google Scholar
[49] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H, Fang C 2019 Nature 566 475
Google Scholar
[50] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A, Wang Z 2019 Nature 566 480
Google Scholar
[51] Yang S A, Pan H, Zhang F 2014 Phys. Rev. Lett 113 046401
Google Scholar
[52] Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X, Kawazoe Y 2015 Phys. Rev. B 92 045108
Google Scholar
[53] Mullen K, Uchoa B, Glatzhofer D T 2015 Phys. Rev. Lett. 115 026403
Google Scholar
[54] Yu R, Weng H, Fang Z, Dai X, Hu X 2015 Phys. Rev. Lett. 115 036807
Google Scholar
[55] Kim Y, Wieder B J, Kane C L, Rappe A M 2015 Phys. Rev. Lett. 115 036806
Google Scholar
[56] Chen Y, Xie Y, Yang S A, Pan H, Zhang F, Cohen M, Zhang S 2015 Nano Lett. 15 6974
Google Scholar
[57] Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Wang B, Lee C C, Jeng H T, Bandil A, Chou F, Lin H, Hasan M Z 2015 arXiv: 1505.03069
[58] Fang C, Chen Y, Kee H Y, Fu L 2015 Phys. Rev. B 92 081201
Google Scholar
[59] Zhong C, Chen Y, Xie Y, Yang S A, Cohen M L, Zhang S B 2016 Nanoscale 8 7232
Google Scholar
[60] Liang Q F, Zhou J, Yu R, Wang Z, Weng H 2016 Phys. Rev. B 93 085427
Google Scholar
[61] Li S, Yu Z M, Liu Y, Guan S, Wang S S, Zhang X, Yao Y, Yang S A 2017 Phys. Rev. B: Rapid Comm. 96 081106
Google Scholar
[62] Lu Y, Zhou D, Chang G, Guan S, Chen W, Jiang Y, Jiang J, Wang X S, Yang S A, Feng Y P, Kawazoe Y, Lin H 2016 npj Comput. Mater. 2 16011
Google Scholar
[63] Wu W, Liu Y, Li S, Zhong C, Yu Z M, Sheng X L, Zhao Y X, Yang S A 2018 Phys. Rev. B 97 115125
Google Scholar
[64] Zhang X, Yu Z M, Lu Y, Sheng X L, Yang H Y, Yang S A 2018 Phys. Rev. B 97 125143
Google Scholar
[65] Xu Q, Yu R, Fang Z, Dai X, Weng H 2017 Phys. Rev. B 95 045136
Google Scholar
[66] Chan Y H, Chiu C K, Chou M Y, Schnyder A P 2016 Phys. Rev. B 93 205132
Google Scholar
[67] Du Y, Tang F, Wang D, Sheng L, Kan E J, Duan C G, Savrasov S Y, Wan X 2017 npj Quantum Mater. 2 3
Google Scholar
[68] Huang H, Liu J, Vanderbilt D, Duan W 2016 Phys. Rev. B 93 201114
Google Scholar
[69] Li S, Liu Y, Fu B, Yu Z M, Yang S A, Yao Y 2018 Phys. Rev. B 97 245148
Google Scholar
[70] Li R, Ma H, Cheng X, Wang S, Li D, Zhang Z, Li Y, Chen X Q 2016 Phys. Rev. Lett. 117 096401
Google Scholar
[71] Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B, Lee C C, Jeng H T, Zhang C, Yuan Z, Jia S, Bansil A, Chou F, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556
Google Scholar
[72] Young S M, Kane C L 2015 Phys. Rev. Lett. 115 126803
Google Scholar
[73] Wang S S, Liu Y, Yu Z M, Sheng X L, Yang S A 2017 Nat. Commun. 8 1844
Google Scholar
[74] Li S, Liu Y, Wang S S, Yu Z M, Guan S, Sheng X L, Yao Y, Yang S A 2018 Phys. Rev. B 97 045131
Google Scholar
[75] Bzdušek T, Wu Q, Rüegg A, Sigrist M, Soluyanov A A 2016 Nature 538 7623
[76] Sato T, Wang Z, Nakayama K, Souma S, Takane D, Nakata Y, Iwasawa H, Cacho C, Timur K, Takahashi T, Ando Y 2018 Phys. Rev. B 98 121111
Google Scholar
[77] An L, Zhang H, Hu J, Zhu X, Gao W, Zhang J, Xi C, Ning W, Mao Z, Tan M 2018 Phys. Rev. B 97 235133
Google Scholar
[78] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495
Google Scholar
[79] Xu Y, Zhang F, Zhang C 2015 Phys. Rev. Lett. 115 265304
Google Scholar
[80] Zhang X, Jin L, Dai X, Liu G 2017 J. Phys. Chem. Lett. 8 4814
Google Scholar
[81] Chang T R, Pletikosic I, Kong T, Bian G, Huang A, Denlinger J, Kushwaha S K, Sinkovic B, Jeng H T, Valla T, Xie W, Cava R J 2018 Adv. Sci. 6 1800897
[82] Li Z H, Wang W, Zhou P, Ma Z S, Sun L Z 2019 New J. Phys. 21 033018
Google Scholar
[83] Yu Z M, Wu W, Sheng X L, Zhao Y X, Yang S A 2019 Phys. Rev. B. Rapid Comm. 99 121106
Google Scholar
[84] Zhong C, Wu W, He J, Ding G, Liu Y, Li D, Yang S A, Zhang G 2019 Nanoscale 11 2468
Google Scholar
[85] Wang S S, Yu Z M, Liu Y, Jiao Y, Guan S, Sheng X L, Yang S A 2019 Phys. Rev. Mater. 3 084201
Google Scholar
[86] Zeng M, Fang C, Chang G, Chen Y A, Hsieh T, Bansil A, Lin H, Fu L 2015 arXiv: 1504.03492
[87] Kobayashi S, Yamakawa Y, Yamakage A, Inohara T, Okamoto Y, Tanaka Y 2017 Phys. Rev. B 95 245208
Google Scholar
[88] Gong C, Xie Y, Chen Y, Kim H S, Vanderbilt D 2018 Phys. Rev. Lett. 120 106403
Google Scholar
[89] Sheng X L, Yu Z M, Yu R, Weng H, Yang S A 2017 J. Phys. Chem. Lett. 8 3506
Google Scholar
[90] Zhong C, Chen Y, Yu Z -M, Xie Y, Wang H, Yang S A Zhang S 2017 Nat. Commun. 8 15641
Google Scholar
[91] Chang G, Xu S Y, Zhou X, Huang S M, Singh B, Wang B, Belopolski I, Yin J, Zhang S, Bansil A, Lin H, Hasan M Z 2017 Phys. Rev. Lett. 119 156401
Google Scholar
[92] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706
Google Scholar
[93] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
Google Scholar
[94] Wu W, Jiao Y, Li S, Sheng X L, Yu Z -M, Yang S A 2019 Phys. Rev. Materials 3 054203
Google Scholar
[95] You J Y, Chen C, Zhang Z, Sheng X L, Yang S A, Su G 2019 Phys. Rev. B 100 064408
Google Scholar
[96] Guan S, Liu Y, Yu Z M, Wang S S, Yao Y, Yang S A 2017 Phys. Rev. Materials 1 054003
Google Scholar
[97] Jin Y J, Wang R, Zhao J Z, Du Y P, Zheng C D, Gan L Y, Liu J F, Xu H, Tong S Y 2017 Nanoscale 9 13112
Google Scholar
[98] Zhou P, Ma Z S, Sun L Z 2018 Journal of Materials Chemistry C 6 1206
Google Scholar
[99] Feng B, Fu B, Kasamatsu S, Ito S, Cheng P, Liu C C, Feng Y, Wu S, Mahatha S K, Sheverdyaeva P, Moras O, Arita M, Sugino O, Chiang T C, Shimada K, Miyamoto K, Okuda T, Wu K, Chen L, Yao Y 2017 Nat. Commun. 8 1007
Google Scholar
[100] Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S, Gao H J 2018 Adv. Mater. 30 1707055
Google Scholar
[101] Li R, Xu Y, He J, Ullah S, Li J, Liu J M, Li D, Franchini C, Weng H, Chen X Q 2016 arXiv: 1610.07142
[102] Shi Y, Guo Y, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Arai M 2013 Nature Mater. 12 1024
Google Scholar
[103] Chang G, Xu S Y, Zheng H, Singh B, Hsu C H, Bian G, Alidoust N, Belopolski I, Sanchez D S, Zhang S, Lin H, Hasan M Z 2016 Sci. Rep. 6 38839
Google Scholar
[104] Zhang R W, Zhang Z, Liu C C, Yao Y 2019 arXiv: 1907.01130
[105] Wang R, Zhao J Z, Jin Y J, Du Y P, Zhao Y X, Xu H, Tong S Y 2018 Phys. Rev. B 97 241111
Google Scholar
[106] Chen C, Yu Z M, Li S, Chen Z, Sheng X L, Yang S A 2019 Phys. Rev. B 99 075131
Google Scholar
[107] Wang J 2017 Phys. Rev. B 96 081107
Google Scholar
[108] Hosen M M, Dhakal G, Dimitri K, Maldonado P, Aperis A, Firoza K, Christopher S, Riseborough P, Oppeneer P M, Kaczorowski D, Durakiewicz T, Neupane M 2018 Sci. Rep. 8 13283
Google Scholar
[109] Zhou X, Zhang R W, Zhang Z, Ma D S, Feng W, Mokrousov Y, Yao Y 2019 J. Phys. Chem. Lett. 10 3101
Google Scholar
[110] Feng B, Zhang R W, Feng Y, Fu B, Wu S, Miyamoto K, He S, Chen L, Wu K, Shimada K, Okuda T, Yao Y 2019 Phy. Rev. Lett. 123 116401
Google Scholar
[111] Heikkilä T T, Kopnin N B, Volovik G E 2011 JETP Lett. 94 233
Google Scholar
[112] Liu J, Balents L 2017 Phys. Rev. B 95 075426
Google Scholar
[113] Bzdušek T, Sigrist M 2017 Phys. Rev. B 96 155105
Google Scholar
[114] Xiao M, Sun X Q, Fan S 2019 Phys. Rev. B 99 094206
Google Scholar
[115] Zhang X, Yu Z M, Zhu Z, Wu W, Wang S S, Sheng X L, Yang S A 2018 Phys. Rev. B 97 235150
Google Scholar
[116] Zhao Y X, Schnyder A P 2016 Phys. Rev. B 94 195109
Google Scholar
[117] Yu Z M, Wu W, Zhao Y X, Yang S A 2019 Phys. Rev. B 100 041118
Google Scholar
[118] Nielsen H B, Ninomiya M 1981 Nucl. Phys. B 185 20
Google Scholar
[119] Nielsen H B, Ninomiya M 1981 Nucl. Phys. B 193 173
Google Scholar
[120] Rhim J W, Kim Y B 2015 Phys. Rev. B 92 045126
Google Scholar
[121] Liu Y, Yang S A, Zhang F 2018 Phys. Rev. B 97 035153
Google Scholar
-
图 3 在狄拉克超导体中出现的由手征对称性保护的节线 (a)当空间反演或者时间反演破坏时, 一个狄拉克点会变为一个节环或两个外尔点; (b)−(d)刻画了(a)中几种简并点的拓扑保护机制, 其中节环是由拓扑绕数所保护[51]
Fig. 3. Chiral symmetry protected nodal line in a Dirac superconductor: (a) A Dirac node can evolve into a nodal ring or two Weyl nodes under different symmetry breaking; (b)−(d) illustrate the different topological protection for the degeneracies in (a). Here, the nodal ring is protected by the winding number[51].
图 4 在三种碳材料中发现的节线 (a) Mackay-Terrones结构的三维碳和节线在动量空间的表示[52]; (b) hyperhoneycomb结构的三维碳和节线在动量空间的表示[53]; (c)三维的石墨烯网络结构和节线在动量空间的表示[56]
Fig. 4. Nodal lines found in three carbon allotropes: (a) 3D carbon with Mackay-Terrones crystal structur[52]; (b) 3D hyperhoneycomb carbon[53]; (c) 3D graphene network structure[56].
图 5 滑移镜面所保护的节线 (a) O和X是滑移镜面上对应两个不同配对类型的TRIM点; (b)展示了沿着连接O和X的一条路径L上的能带特征, 这里每四条能带都会形成一种沙漏形的结构; 沙漏脖子处的交叉点P在滑移镜面上会形成一条节线
Fig. 5. Nodal line protected by the glide mirror symmetry: (a) Shows the glide-mirror-invariant plane in Brillouin zone, O and X are two TRIM points with different glide mirror eigenvalues; (b) shows the band structure along a path L connecting O and X (as in (a)); it displays an hourglass shaped spectrum. The degeneracy point P in the hourglass traces out a nodal loop in the glide mirror plane.
图 7 三种不同色散类型的节线 (a) type-I节线; (b) type-II节线; (c) hybird节线; (d)−(f)三种节线的等能面[64]
Fig. 7. Three types of nodal lines classified by the energy dispersion: (a) Type-I nodal line; (b) type-II nodal lines; (c) hybrid nodal lines; (d)−(f) show the typical shapes of the constant energy surface for the three types[64].
图 8 Type-II节线和hybrid节线的特殊物理性质 (a) Type-II节线和type-I节线的光学性质的比较[61]; (b) hybrid节线导致的磁坍塌效应和磁振荡中的各向异性[64]
Fig. 8. Unique properties of type-II and hybrid nodal lines: (a) Comparison between type-I and type-II nodal lines in terms of JDOS and optical absorption rate[61]; (b) the magnetic breakdown and its feature in anisotropic magnetic oscillation for a hybrid nodal loop[64].
图 9 (a)按照节线的色散次数进行分类的示意图; (b)−(d)展示了一个具有二次节线的材料ZrPtGa, (c)是ZrPtGa的能带结构, 蓝色实线标记了二次节线, (d)是这个节线在垂直于Γ-A的平面上的色散, 可以清楚地看到是二次色散[83]
Fig. 9. (a) Schematic figure for the higher order nodal lines; (b)−(d) show the quadratic nodal line in ZrPtGa: (c) the band structure of ZrPtGa, the blue solid curve indicates the quadratic nodal line; (d) shows the band dispersion in the plane perpendicular to Γ-A, which clearly demonstrates a quadratic dispersion[83].
图 11 节环可以形成的一些复杂结构 (a)笼子状的结构[38]; (b)骨架状的结构[89];(c)三能带形成的结状节线[90]; (d) Hopf链环[91]; (e)外尔链; (f)狄拉克链[73]
Fig. 11. Different structures formed by nodal lines: (a) Crossed nodal rings[38]; (b) nodal box[89]; (c) inter-connected nodal loops[90]; (d) nodal Hopf link[91]; (e) weyl chain; (f) dirac chain[73].
图 13 节线对应的拓扑表面态 (a)狄拉克超导体中节线导致的鼓膜态[51]; (b)碳的同素异形体中的鼓膜态[52]; (c), (d) ReO2[73]和Ta3SiTe6[74]中的双鼓膜态; (e)对应着三次节线的遍布布里渊区的环面表面态[83]
Fig. 13. Surface states of nodal line metals: (a) Drumhead surface states for nodal rings in superconductors[51]; (b) drumhead surface states in a 3D carbon allotrope[52]; (c), (d) show the double drumhead surface states in ReO2[73]and Ta3SiTe6[74]; (e) surface states of cubic nodal line, which spreads over the whole BZ[83].
图 17 磁性材料中的节面 (a) CsCrI3晶体结构; (b)不考虑SOC时的能带结构; (c), (d)考虑SOC时, 磁矩分别沿面内和面外时的能带结构[63]
Fig. 17. Nodal surface in magnetic materials: (a) The crystal structure of CsCrI3; (b) the band structure of CsCrI3 without SOC; (c) and (d) band structures with magnetic moment along x and z directions respectively[63].
图 19 绕过Nielson-Ninomiya不可行定理的方法 (a)一个单独外尔点的示意图; (b)贝利曲率分布; (c), (d)显示了在表面上不存在连接单外尔点的费米弧表面, 白色点标记了体内外尔点在表面的投影[117]
Fig. 19. A method to circumvent the Nielson-Ninomiya no-go theorem: (a) Schematic figure showing the single Weyl point; (b) Berry curvature distribution; (c), (d) show that there is no surface Fermi arc emitted from the Weyl point, the white dot labels the surface projection of the Weyl point[117].
-
[1] von Klitzing K, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494
Google Scholar
[2] Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405
Google Scholar
[3] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
Google Scholar
[4] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802
Google Scholar
[5] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801
Google Scholar
[6] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
Google Scholar
[7] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[8] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L, MacDonald A H 2006 Phys. Rev. B 74 165310
Google Scholar
[9] Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401
[10] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757
Google Scholar
[11] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766
Google Scholar
[12] Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803
Google Scholar
[13] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045
Google Scholar
[14] Fu L 2011 Phys. Rev. Lett. 106 106802
Google Scholar
[15] Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805
Google Scholar
[16] Schnyder A P, Ryu S, Furusaki A, Ludwig A W 2008 Phys. Rev. B 78 195125
Google Scholar
[17] Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2006 Rev. Mod. Phys. 88 035005
[18] Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959
Google Scholar
[19] Niu Q, Chang M C, Wu B, Xiao D, Cheng R 2017 Physical Effects of Geometric Phases (Singapore: World Scientific)
[20] Hořava P 2005 Phys. Rev. Lett. 95 016405
Google Scholar
[21] Zhao Y X, Wang Z D 2013 Phys. Rev. Lett. 110 240404
Google Scholar
[22] Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101
Google Scholar
[23] Nielsen H B, Ninomiya M 1983 Phys. Lett. B 130 389
Google Scholar
[24] Volovik G E 2003 The Universe in A Helium Droplet (Vol. 117) (Oxford: Oxford University Press on Demand)
[25] Guan S, Yu Z M, Liu Y, Liu G B, Dong L, Lu Y, Yao Y, Yang S A 2017 npj Quant. Mater. 2 23
Google Scholar
[26] Yang S A 2016 SPIN 6 1640003
Google Scholar
[27] Young S M, Zaheer S, Teo J C, Kane C L, Mele E J, Rappe A M 2012 Phys. Rev. Lett. 108 140405
Google Scholar
[28] Xu G, Weng H, Wang Z, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806
Google Scholar
[29] Weng H, Fang C, Fang Z, Dai X 2016 Phys. Rev. B 93 241202
Google Scholar
[30] Zhu Z, Winkler G W, Wu Q, Li J, Soluyanov A A 2016 Phys. Rev. X 6 031003
[31] Chang G, Xu S Y, Huang S M, Sanchez D S, Hsu C H, Bian G, Yu Z M, Belopolski L, Alidoust N, Zheng H, Chang T R, Jeng H T, Yang S A, Neupert T, Lin H, Hasan M Z 2017 Sci. Rep. 7 1688
Google Scholar
[32] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J, Bernevig B A 2016 Science 353 aaf5037
Google Scholar
[33] Wieder B J, Kim Y, Rappe A M, Kane C L 2016 Phys. Rev. Lett. 116 186402
Google Scholar
[34] Kennett M P, Komeilizadeh N, Kaveh K, Smith P M 2011 Phys. Rev. A 83 053636
Google Scholar
[35] Roy B, Smith P M, Kennett M P 2012 Phys. Rev. B 85 235119
Google Scholar
[36] Chen C, Wang S S, Liu L, Yu Z M, Sheng X L, Chen Z, Yang S A 2017 Phys. Rev. Mater. 1 044201
Google Scholar
[37] Liu Q, Zunger A 2017 Phys. Rev. X 7 021019
[38] Yu W C, Zhou X, Chuang F C, Yang S A, Lin H, Bansil A 2018 Phys. Rev. Mater. 2 051201
Google Scholar
[39] Zhu Z, Liu Y, Yu Z M, Wang S S, Zhao Y X, Feng Y, Sheng X L, Yang S A 2018 Phys. Rev. B 98 125104
Google Scholar
[40] Son D T, Spivak B Z 2013 Phys. Rev. B 88 104412
Google Scholar
[41] Gao Y, Yang S A, Niu Q 2017 Phys. Rev. B 95 165135
Google Scholar
[42] Luo Y, McDonald R D, Rosa P F S, Scott B, Wakeham N, Ghimire N J, Bauer E D, Thompson J D, Ronning F 2016 Sci. Rep. 6 27294
Google Scholar
[43] Li Y, Li L, Wang J, Wang T, Xu X, Xi C, Cao C, Dai J 2016 Phys. Rev. B 94 121115
Google Scholar
[44] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X, Fang Z 2012 Phys. Rev. B 85 195320
Google Scholar
[45] Wang Z, Weng H, Wu Q, Dai X, Fang Z 2013 Phys. Rev. B 88 125427
Google Scholar
[46] Weng H, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029
[47] Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B K, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H, Hasan M Z 2015 Nat. Commun. 6 7373
Google Scholar
[48] Tang F, Po H C, Vishwanath A, Wan X 2019 Nature 566 486
Google Scholar
[49] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H, Fang C 2019 Nature 566 475
Google Scholar
[50] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A, Wang Z 2019 Nature 566 480
Google Scholar
[51] Yang S A, Pan H, Zhang F 2014 Phys. Rev. Lett 113 046401
Google Scholar
[52] Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X, Kawazoe Y 2015 Phys. Rev. B 92 045108
Google Scholar
[53] Mullen K, Uchoa B, Glatzhofer D T 2015 Phys. Rev. Lett. 115 026403
Google Scholar
[54] Yu R, Weng H, Fang Z, Dai X, Hu X 2015 Phys. Rev. Lett. 115 036807
Google Scholar
[55] Kim Y, Wieder B J, Kane C L, Rappe A M 2015 Phys. Rev. Lett. 115 036806
Google Scholar
[56] Chen Y, Xie Y, Yang S A, Pan H, Zhang F, Cohen M, Zhang S 2015 Nano Lett. 15 6974
Google Scholar
[57] Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Wang B, Lee C C, Jeng H T, Bandil A, Chou F, Lin H, Hasan M Z 2015 arXiv: 1505.03069
[58] Fang C, Chen Y, Kee H Y, Fu L 2015 Phys. Rev. B 92 081201
Google Scholar
[59] Zhong C, Chen Y, Xie Y, Yang S A, Cohen M L, Zhang S B 2016 Nanoscale 8 7232
Google Scholar
[60] Liang Q F, Zhou J, Yu R, Wang Z, Weng H 2016 Phys. Rev. B 93 085427
Google Scholar
[61] Li S, Yu Z M, Liu Y, Guan S, Wang S S, Zhang X, Yao Y, Yang S A 2017 Phys. Rev. B: Rapid Comm. 96 081106
Google Scholar
[62] Lu Y, Zhou D, Chang G, Guan S, Chen W, Jiang Y, Jiang J, Wang X S, Yang S A, Feng Y P, Kawazoe Y, Lin H 2016 npj Comput. Mater. 2 16011
Google Scholar
[63] Wu W, Liu Y, Li S, Zhong C, Yu Z M, Sheng X L, Zhao Y X, Yang S A 2018 Phys. Rev. B 97 115125
Google Scholar
[64] Zhang X, Yu Z M, Lu Y, Sheng X L, Yang H Y, Yang S A 2018 Phys. Rev. B 97 125143
Google Scholar
[65] Xu Q, Yu R, Fang Z, Dai X, Weng H 2017 Phys. Rev. B 95 045136
Google Scholar
[66] Chan Y H, Chiu C K, Chou M Y, Schnyder A P 2016 Phys. Rev. B 93 205132
Google Scholar
[67] Du Y, Tang F, Wang D, Sheng L, Kan E J, Duan C G, Savrasov S Y, Wan X 2017 npj Quantum Mater. 2 3
Google Scholar
[68] Huang H, Liu J, Vanderbilt D, Duan W 2016 Phys. Rev. B 93 201114
Google Scholar
[69] Li S, Liu Y, Fu B, Yu Z M, Yang S A, Yao Y 2018 Phys. Rev. B 97 245148
Google Scholar
[70] Li R, Ma H, Cheng X, Wang S, Li D, Zhang Z, Li Y, Chen X Q 2016 Phys. Rev. Lett. 117 096401
Google Scholar
[71] Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B, Lee C C, Jeng H T, Zhang C, Yuan Z, Jia S, Bansil A, Chou F, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556
Google Scholar
[72] Young S M, Kane C L 2015 Phys. Rev. Lett. 115 126803
Google Scholar
[73] Wang S S, Liu Y, Yu Z M, Sheng X L, Yang S A 2017 Nat. Commun. 8 1844
Google Scholar
[74] Li S, Liu Y, Wang S S, Yu Z M, Guan S, Sheng X L, Yao Y, Yang S A 2018 Phys. Rev. B 97 045131
Google Scholar
[75] Bzdušek T, Wu Q, Rüegg A, Sigrist M, Soluyanov A A 2016 Nature 538 7623
[76] Sato T, Wang Z, Nakayama K, Souma S, Takane D, Nakata Y, Iwasawa H, Cacho C, Timur K, Takahashi T, Ando Y 2018 Phys. Rev. B 98 121111
Google Scholar
[77] An L, Zhang H, Hu J, Zhu X, Gao W, Zhang J, Xi C, Ning W, Mao Z, Tan M 2018 Phys. Rev. B 97 235133
Google Scholar
[78] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495
Google Scholar
[79] Xu Y, Zhang F, Zhang C 2015 Phys. Rev. Lett. 115 265304
Google Scholar
[80] Zhang X, Jin L, Dai X, Liu G 2017 J. Phys. Chem. Lett. 8 4814
Google Scholar
[81] Chang T R, Pletikosic I, Kong T, Bian G, Huang A, Denlinger J, Kushwaha S K, Sinkovic B, Jeng H T, Valla T, Xie W, Cava R J 2018 Adv. Sci. 6 1800897
[82] Li Z H, Wang W, Zhou P, Ma Z S, Sun L Z 2019 New J. Phys. 21 033018
Google Scholar
[83] Yu Z M, Wu W, Sheng X L, Zhao Y X, Yang S A 2019 Phys. Rev. B. Rapid Comm. 99 121106
Google Scholar
[84] Zhong C, Wu W, He J, Ding G, Liu Y, Li D, Yang S A, Zhang G 2019 Nanoscale 11 2468
Google Scholar
[85] Wang S S, Yu Z M, Liu Y, Jiao Y, Guan S, Sheng X L, Yang S A 2019 Phys. Rev. Mater. 3 084201
Google Scholar
[86] Zeng M, Fang C, Chang G, Chen Y A, Hsieh T, Bansil A, Lin H, Fu L 2015 arXiv: 1504.03492
[87] Kobayashi S, Yamakawa Y, Yamakage A, Inohara T, Okamoto Y, Tanaka Y 2017 Phys. Rev. B 95 245208
Google Scholar
[88] Gong C, Xie Y, Chen Y, Kim H S, Vanderbilt D 2018 Phys. Rev. Lett. 120 106403
Google Scholar
[89] Sheng X L, Yu Z M, Yu R, Weng H, Yang S A 2017 J. Phys. Chem. Lett. 8 3506
Google Scholar
[90] Zhong C, Chen Y, Yu Z -M, Xie Y, Wang H, Yang S A Zhang S 2017 Nat. Commun. 8 15641
Google Scholar
[91] Chang G, Xu S Y, Zhou X, Huang S M, Singh B, Wang B, Belopolski I, Yin J, Zhang S, Bansil A, Lin H, Hasan M Z 2017 Phys. Rev. Lett. 119 156401
Google Scholar
[92] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706
Google Scholar
[93] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
Google Scholar
[94] Wu W, Jiao Y, Li S, Sheng X L, Yu Z -M, Yang S A 2019 Phys. Rev. Materials 3 054203
Google Scholar
[95] You J Y, Chen C, Zhang Z, Sheng X L, Yang S A, Su G 2019 Phys. Rev. B 100 064408
Google Scholar
[96] Guan S, Liu Y, Yu Z M, Wang S S, Yao Y, Yang S A 2017 Phys. Rev. Materials 1 054003
Google Scholar
[97] Jin Y J, Wang R, Zhao J Z, Du Y P, Zheng C D, Gan L Y, Liu J F, Xu H, Tong S Y 2017 Nanoscale 9 13112
Google Scholar
[98] Zhou P, Ma Z S, Sun L Z 2018 Journal of Materials Chemistry C 6 1206
Google Scholar
[99] Feng B, Fu B, Kasamatsu S, Ito S, Cheng P, Liu C C, Feng Y, Wu S, Mahatha S K, Sheverdyaeva P, Moras O, Arita M, Sugino O, Chiang T C, Shimada K, Miyamoto K, Okuda T, Wu K, Chen L, Yao Y 2017 Nat. Commun. 8 1007
Google Scholar
[100] Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S, Gao H J 2018 Adv. Mater. 30 1707055
Google Scholar
[101] Li R, Xu Y, He J, Ullah S, Li J, Liu J M, Li D, Franchini C, Weng H, Chen X Q 2016 arXiv: 1610.07142
[102] Shi Y, Guo Y, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Arai M 2013 Nature Mater. 12 1024
Google Scholar
[103] Chang G, Xu S Y, Zheng H, Singh B, Hsu C H, Bian G, Alidoust N, Belopolski I, Sanchez D S, Zhang S, Lin H, Hasan M Z 2016 Sci. Rep. 6 38839
Google Scholar
[104] Zhang R W, Zhang Z, Liu C C, Yao Y 2019 arXiv: 1907.01130
[105] Wang R, Zhao J Z, Jin Y J, Du Y P, Zhao Y X, Xu H, Tong S Y 2018 Phys. Rev. B 97 241111
Google Scholar
[106] Chen C, Yu Z M, Li S, Chen Z, Sheng X L, Yang S A 2019 Phys. Rev. B 99 075131
Google Scholar
[107] Wang J 2017 Phys. Rev. B 96 081107
Google Scholar
[108] Hosen M M, Dhakal G, Dimitri K, Maldonado P, Aperis A, Firoza K, Christopher S, Riseborough P, Oppeneer P M, Kaczorowski D, Durakiewicz T, Neupane M 2018 Sci. Rep. 8 13283
Google Scholar
[109] Zhou X, Zhang R W, Zhang Z, Ma D S, Feng W, Mokrousov Y, Yao Y 2019 J. Phys. Chem. Lett. 10 3101
Google Scholar
[110] Feng B, Zhang R W, Feng Y, Fu B, Wu S, Miyamoto K, He S, Chen L, Wu K, Shimada K, Okuda T, Yao Y 2019 Phy. Rev. Lett. 123 116401
Google Scholar
[111] Heikkilä T T, Kopnin N B, Volovik G E 2011 JETP Lett. 94 233
Google Scholar
[112] Liu J, Balents L 2017 Phys. Rev. B 95 075426
Google Scholar
[113] Bzdušek T, Sigrist M 2017 Phys. Rev. B 96 155105
Google Scholar
[114] Xiao M, Sun X Q, Fan S 2019 Phys. Rev. B 99 094206
Google Scholar
[115] Zhang X, Yu Z M, Zhu Z, Wu W, Wang S S, Sheng X L, Yang S A 2018 Phys. Rev. B 97 235150
Google Scholar
[116] Zhao Y X, Schnyder A P 2016 Phys. Rev. B 94 195109
Google Scholar
[117] Yu Z M, Wu W, Zhao Y X, Yang S A 2019 Phys. Rev. B 100 041118
Google Scholar
[118] Nielsen H B, Ninomiya M 1981 Nucl. Phys. B 185 20
Google Scholar
[119] Nielsen H B, Ninomiya M 1981 Nucl. Phys. B 193 173
Google Scholar
[120] Rhim J W, Kim Y B 2015 Phys. Rev. B 92 045126
Google Scholar
[121] Liu Y, Yang S A, Zhang F 2018 Phys. Rev. B 97 035153
Google Scholar
计量
- 文章访问数: 26801
- PDF下载量: 1432
- 被引次数: 0