搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维数值仿真研究锗硅异质结双极晶体管总剂量效应

张晋新 王信 郭红霞 冯娟 吕玲 李培 闫允一 吴宪祥 王辉

引用本文:
Citation:

三维数值仿真研究锗硅异质结双极晶体管总剂量效应

张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉

Three-dimensional simulation of total ionizing dose effect on SiGe heterojunction bipolor transistor

Zhang Jin-Xin, Wang Xin, Guo Hong-Xia, Feng Juan, Lü Ling, Li Pei, Yan Yun-Yi, Wu Xian-Xiang, Wang Hui
PDF
HTML
导出引用
  • 为探索锗硅异质结双极晶体管(SiGe HBT)总剂量效应的损伤机理, 采用半导体器件三维模拟工具(TCAD), 建立电离辐照总剂量效应损伤模型, 分析比较电离辐射在SiGe HBT不同氧化层结构的不同位置引入陷阱电荷缺陷后, 器件正向Gummel特性和反向Gummel特性的退化特征, 获得SiGe HBT总剂量效应损伤规律, 并与60Co γ辐照实验进行对比. 结果表明: 总剂量辐照在SiGe HBT器件中引入的氧化物陷阱正电荷主要在pn结附近的Si/SiO2界面处产生影响, 引起pn结耗尽区的变化, 带来载流子复合增加, 最终导致基极电流增大、增益下降; 其中EB Spacer氧化层中产生的陷阱电荷主要影响正向Gummel特性, 而LOCOS隔离氧化层中的陷阱电荷则是造成反向Gummel特性退化的主要因素. 通过数值模拟分析获得的SiGe HBT总剂量效应损伤规律与不同偏置下60Co γ辐照实验的结论符合得较好.
    The damage mechanism of the total ionizing dose (TID) effect of SiGe heterojunction bipolor transistar (SiGe HBT) is explored by using three-dimensional simulation of semiconductor device (TCAD).In the simulation, the trapped charge defects are introduced into different locations of oxidationin SiGe HBT to simulate the TID effect. Then the degradation characteristics of the forward Gummel characteristic and the reverse Gummel characteristic of the device are analyzed, and the TID damage law of SiGe HBT is obtained. Finally, the simulation results are compared with the 60Co γ irradiation test results, showing that the trapped charges introduced by TID irradiation in SiGe HBT device mainly affect the Si/SiO2 interface near the p-n junction, resulting in the change in the depletion region of the p-n junction and the increase of carrier recombination. Eventually, the base current increases and the gain decreases. The trapped charges generated in the EB spacer oxide layer mainly affect the forward Gummel characteristics, and the trapped charges in the LOCOS isolation oxide layer are the main factor causing the reverse Gummel characteristics to degrade. The experimental results on 60Co γ irradiation under different biases are consistent with those from the total dose effect damage law of SiGe HBT obtained by numerical simulation analysis.
      通信作者: 冯娟, fengj@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11805270, 12005159, 61704127)资助的课题
      Corresponding author: Feng Juan, fengj@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11805270, 12005159, 61704127)
    [1]

    Datta K, Hashemi H, Performance L 2014 IEEE J. Solid-State Circuits 49 2150Google Scholar

    [2]

    张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 62 048501Google Scholar

    Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501Google Scholar

    [3]

    Cressler J D 2004 Silicon-Germanium Heterojunction Bipolar Transistor (Boston: John Wiley & Sons, Ltd) p23

    [4]

    Garcia E R, ZerounianN, CrozatP, Aguilar M E, Chevalier P, ChantreA, Aniel F 2009 Cryogenics 49 620Google Scholar

    [5]

    张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信 2014 63 248503Google Scholar

    Zhang J X, He C H, Guo H X, Tang D, Xiong C, Li P, Wang X 2014 Acta Phys. Sin. 63 248503Google Scholar

    [6]

    Pratapgarhwala M 2005 Ph. D. Dissertation (Atlanta: Georgia Institute of Technology)

    [7]

    Bellini M 2009 Ph. D. Dissertation (Atlanta: Georgia Institute of Technology)

    [8]

    Ullan M, Wilder M, Spieler H, Spencer E, Rescia S, Newcomer F M, Martinez-McKinney F, Kononenko W, Grillo A A, Diez S 2012 Nucl. Instrum. Method Phys. Res. B 724 41

    [9]

    Praveen K C, Pushpa N, Naik P S, Cressler J D, Tripathi A, Gnana A P 2012 Nucl. Instrum. Method Phys. Res. B 273 43Google Scholar

    [10]

    Sun Y B, Fu J, Xu J, Wang Y D, Zhou W, Zhang W, Cui J, Li G Q, Liu Z H 2013 Nucl. Instrum. Method Phys. Res. B 312 77Google Scholar

    [11]

    Díez S, Lozano M, Pellegrini G, Campabadal F, Mandic I, Knoll D, Heinemann B, Ullánet M 2009 IEEE Trans. Nucl. Sci. 56 1931Google Scholar

    [12]

    Fleetwood Z E, Cardoso A S, Song I, Wilcox E, Lourenco N E, Philips S D, Arora R, Amouzou P P, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 2915Google Scholar

    [13]

    Yan G, Bi J, Xu G, Xi K, Li B, Fan L, Yin H 2020 IEEE Access 8 154898Google Scholar

    [14]

    曹杨, 习凯, 徐彦楠, 李梅, 李博, 毕津顺, 刘明 2019 68 038501Google Scholar

    Cao Y, Xi K, Xu Y, Li M, Li B, Bi J, Liu M 2019 Acta Phys. Sin. 68 038501Google Scholar

    [15]

    Banerje G, Niu G, Cressler J D, Clark S D, Palmer M J, Ahlgren D C 1999 IEEE Trans. Nucl. Sci. 46 1620Google Scholar

    [16]

    Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706Google Scholar

    [17]

    Sutton A K, Prakash A P G, Jun B, Zhao E, Bellini M, Pellish J, Diestelhorst R M, Carts M A, Phan A, Ladbury R, Cressler J D, Fleetwood D M 2006 IEEE Trans. Nucl. Sci. 53 3166Google Scholar

    [18]

    Xu Y, Bi J, Xu G, Xi K, Li B, Wang H, Liu M 2018 Chin. Phys. Lett. 35 118501Google Scholar

    [19]

    Boch J, Saigne F, Touboul A D, Ducret S, Carlotti J F, Bernard M, Schrimpf R D, Wrobel F, Sarrabayrouse G 2006 Appl. Phys. Lett. 88 232113Google Scholar

    [20]

    Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Li P, Liu M H 2016 IEEE Trans. Nucl. Sci. 63 1251Google Scholar

    [21]

    Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Li P, Wen L 2018 Microelectron. Reliab. 84 105Google Scholar

    [22]

    Zhang S, Cressler J D, Niu G F, Marshall C J, Marshall P W, Kim H S, Reed R A, Palmer M J, Joseph A J, Harame D L 2003 Solid-State Electron. 47 1729Google Scholar

  • 图 1  SiGe HBT结构示意图

    Fig. 1.  Schematic device cross section of SiGe HBT.

    图 2  器件结构仿真模型 (a) 器件三维结构; (b) 内部结构二维剖面图(上)及局部放大视图(下)

    Fig. 2.  Device model of simulation: (a) Three dimensional (3D) structure; (b) two dimensional (2D) cross section of SiGe HBT.

    图 3  不同Si/SiO2界面位置处添加traps模型的示意图 (a)本征基区In-base与EB spacer界面添加traps; (b)本征基区In-base与LOCOS上界面添加trap; (c)发射区和EB spacer界面添加traps; (d)本征基区In-base与LOCOS下界面、集电区与LOCOS下界面添加traps

    Fig. 3.  Traps on different location of Si/SiO2 interface: (a) Traps on interface between In-base and EB spacer; (b) traps on interface between In-base and upside LOCOS; (c) traps on interface between emitter and EB spacer; (d) traps on interface between below side LOCOS and In-base, up side and collector .

    图 4  添加traps模型前后SiGe HBT Gummel特性变化 (a)正向Gummel; (b)反向Gummel

    Fig. 4.  Gummel characteristics of SiGe HBT in the pre and post traps: (a) Forward Gummel characteristics; (b) reverse Gummel characteristics.

    图 5  对比只在器件一处Si/SiO2界面添加traps模型的正向Gummel特性变化 (a)正向Gummel基极电流变化; (b)正向Gummel特性归一化过剩基极电流

    Fig. 5.  Forward Gummel characteristic with the traps model added toonly one Si/SiO2 interface: (a) Base current of forward Gummel; (b) normalized excess base current of forward Gummel.

    图 6  对比本征基区与EB spacer界面添加traps模型的正向Gummel特性变化 (a) 正向Gummel基极电流变化; (b) 正向Gummel特性归一化过剩基极电流

    Fig. 6.  Forward Gummel characteristic with the traps model added to theinterface of intrinsic base and EB spacer: (a) Base current of forward Gummel; (b) normalized excess base current.

    图 7  对比LOCOS隔离下界面添加traps模型的正向Gummel特性基极电流变化

    Fig. 7.  Base current of forward Gummel characteristic with the traps model added to theinterface on the below side of LOCOS.

    图 8  对比只在器件一处Si/SiO2界面添加traps模型的反向Gummel特性变化 (a)反向Gummel基极电流变化; (b)反向Gummel特性归一化过剩基极电流

    Fig. 8.  Reverse Gummel characteristic with the traps model added only to one Si/SiO2 interface: (a) Base current of reverse Gummel; (b) normalized excess base current of reverse Gummel.

    图 9  对比本征基区与LOCOS隔离上界面分布陷阱缺陷的归一化过剩基极电流

    Fig. 9.  Normalized excess base current of reverse Gummel with the traps model added to the interface of intrinsic base and upside LOCOS.

    图 10  对比本征基区与LOCOS隔离下界面分布陷阱缺陷的归一化过剩基极电流

    Fig. 10.  Normalized excess base current of reverse Gummel with the traps model added to the interface of intrinsic base and below LOCOS.

    图 11  60Co γ射线辐照后不同偏置条件样品的归一化过剩基极电流 (a)正向Gummel测试; (b)反向Gummel测试

    Fig. 11.  Normalized excess base currents of SiGe HBT after γ irriadition in different biases: (a) Forward Gummel; (b) reverse Gummel.

    Baidu
  • [1]

    Datta K, Hashemi H, Performance L 2014 IEEE J. Solid-State Circuits 49 2150Google Scholar

    [2]

    张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 62 048501Google Scholar

    Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501Google Scholar

    [3]

    Cressler J D 2004 Silicon-Germanium Heterojunction Bipolar Transistor (Boston: John Wiley & Sons, Ltd) p23

    [4]

    Garcia E R, ZerounianN, CrozatP, Aguilar M E, Chevalier P, ChantreA, Aniel F 2009 Cryogenics 49 620Google Scholar

    [5]

    张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信 2014 63 248503Google Scholar

    Zhang J X, He C H, Guo H X, Tang D, Xiong C, Li P, Wang X 2014 Acta Phys. Sin. 63 248503Google Scholar

    [6]

    Pratapgarhwala M 2005 Ph. D. Dissertation (Atlanta: Georgia Institute of Technology)

    [7]

    Bellini M 2009 Ph. D. Dissertation (Atlanta: Georgia Institute of Technology)

    [8]

    Ullan M, Wilder M, Spieler H, Spencer E, Rescia S, Newcomer F M, Martinez-McKinney F, Kononenko W, Grillo A A, Diez S 2012 Nucl. Instrum. Method Phys. Res. B 724 41

    [9]

    Praveen K C, Pushpa N, Naik P S, Cressler J D, Tripathi A, Gnana A P 2012 Nucl. Instrum. Method Phys. Res. B 273 43Google Scholar

    [10]

    Sun Y B, Fu J, Xu J, Wang Y D, Zhou W, Zhang W, Cui J, Li G Q, Liu Z H 2013 Nucl. Instrum. Method Phys. Res. B 312 77Google Scholar

    [11]

    Díez S, Lozano M, Pellegrini G, Campabadal F, Mandic I, Knoll D, Heinemann B, Ullánet M 2009 IEEE Trans. Nucl. Sci. 56 1931Google Scholar

    [12]

    Fleetwood Z E, Cardoso A S, Song I, Wilcox E, Lourenco N E, Philips S D, Arora R, Amouzou P P, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 2915Google Scholar

    [13]

    Yan G, Bi J, Xu G, Xi K, Li B, Fan L, Yin H 2020 IEEE Access 8 154898Google Scholar

    [14]

    曹杨, 习凯, 徐彦楠, 李梅, 李博, 毕津顺, 刘明 2019 68 038501Google Scholar

    Cao Y, Xi K, Xu Y, Li M, Li B, Bi J, Liu M 2019 Acta Phys. Sin. 68 038501Google Scholar

    [15]

    Banerje G, Niu G, Cressler J D, Clark S D, Palmer M J, Ahlgren D C 1999 IEEE Trans. Nucl. Sci. 46 1620Google Scholar

    [16]

    Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706Google Scholar

    [17]

    Sutton A K, Prakash A P G, Jun B, Zhao E, Bellini M, Pellish J, Diestelhorst R M, Carts M A, Phan A, Ladbury R, Cressler J D, Fleetwood D M 2006 IEEE Trans. Nucl. Sci. 53 3166Google Scholar

    [18]

    Xu Y, Bi J, Xu G, Xi K, Li B, Wang H, Liu M 2018 Chin. Phys. Lett. 35 118501Google Scholar

    [19]

    Boch J, Saigne F, Touboul A D, Ducret S, Carlotti J F, Bernard M, Schrimpf R D, Wrobel F, Sarrabayrouse G 2006 Appl. Phys. Lett. 88 232113Google Scholar

    [20]

    Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Li P, Liu M H 2016 IEEE Trans. Nucl. Sci. 63 1251Google Scholar

    [21]

    Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Li P, Wen L 2018 Microelectron. Reliab. 84 105Google Scholar

    [22]

    Zhang S, Cressler J D, Niu G F, Marshall C J, Marshall P W, Kim H S, Reed R A, Palmer M J, Joseph A J, Harame D L 2003 Solid-State Electron. 47 1729Google Scholar

  • [1] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应.  , 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [2] 黄馨雨, 张晋新, 王信, 吕玲, 郭红霞, 冯娟, 闫允一, 王辉, 戚钧翔. 基于锗硅异质结双极晶体管的低噪声放大器及其反模结构的单粒子瞬态数值仿真研究.  , 2024, 73(12): 126103. doi: 10.7498/aps.73.20240307
    [3] 朱海龙, 李雪迎, 童洪辉. 三维数值模拟射频热等离子体的物理场分布.  , 2021, 70(15): 155202. doi: 10.7498/aps.70.20202135
    [4] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究.  , 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [5] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性.  , 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [6] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究.  , 2021, (): . doi: 10.7498/aps.70.20211795
    [7] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究.  , 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [8] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究.  , 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [9] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究.  , 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [10] 李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新. 锗硅异质结双极晶体管单粒子效应加固设计与仿真.  , 2015, 64(11): 118502. doi: 10.7498/aps.64.118502
    [11] 王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯. 深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究.  , 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [12] 张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信. 不同偏置影响锗硅异质结双极晶体管单粒子效应的三维数值仿真研究.  , 2014, 63(24): 248503. doi: 10.7498/aps.63.248503
    [13] 卓青青, 刘红侠, 彭里, 杨兆年, 蔡惠民. 总剂量辐照条件下部分耗尽半导体氧化物绝缘层N沟道金属氧化物半导体器件的三种kink效应.  , 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [14] 卓青青, 刘红侠, 王志. 三维H形栅SOINMOS器件总剂量条件下的单粒子效应.  , 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [15] 孙亚宾, 付军, 许军, 王玉东, 周卫, 张伟, 崔杰, 李高庆, 刘志弘. 不同剂量率下锗硅异质结双极晶体管电离损伤效应研究.  , 2013, 62(19): 196104. doi: 10.7498/aps.62.196104
    [16] 张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟. 重离子导致的锗硅异质结双极晶体管单粒子效应电荷收集三维数值模拟.  , 2013, 62(4): 048501. doi: 10.7498/aps.62.048501
    [17] 周昕杰, 李蕾蕾, 周毅, 罗静, 于宗光. 辐照下背栅偏置对部分耗尽型绝缘层上硅器件背栅效应影响及机理分析.  , 2012, 61(20): 206102. doi: 10.7498/aps.61.206102
    [18] 李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博. 部分耗尽绝缘层附着硅静态随机存储器总剂量辐射损伤效应的研究.  , 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [19] 朱昌盛, 冯力, 王智平, 肖荣振. 三维枝晶生长的相场法数值模拟研究.  , 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [20] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟.  , 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
计量
  • 文章访问数:  4735
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 修回日期:  2021-10-26
  • 上网日期:  2022-03-01
  • 刊出日期:  2022-03-05

/

返回文章
返回
Baidu
map